Pandas教程19:groupby分组后,对列中指定关键字的组,进行求和运算。

---------------pandas数据分析集合---------------
Python教程71:学习Pandas中一维数组Series
Python教程74:Pandas中DataFrame数据创建方法及缺失值与重复值处理
Pandas数据化分析,DataFrame行列索引数据的选取,增加,修改和删除操作
Pandas教程05:DataFrame数据常用属性和方法汇总
Pandas教程06:DataFrame.merge数据的合并处理
Pandas教程07:DataFrame数据的算术运算+逻辑运算+describe()方法+统计函数+自定义函数运算
Pandas教程08:教你DataFrame数据的条件筛选——精选篇
Pandas教程09:使用date_range函数,创建时间序列数据
Pandas教程10:DataFrame数据可视化绘制折线图、柱状图、散点图、饼形图
Pandas教程11:关于pd.DataFrame.shift(1)数据下移的示例用法
Tkinter教程22:DataFrame数据加入到treeview树视图(含横纵滚动条+正反向排序)
Pandas教程12:常用的pd.set_option方法,显示所有行和列+不换行显示等等…
Pandas教程13:groupby函数的分组、聚合、转换和过滤操作
Pandas教程14:DataFrame数据合并(concat+merge+_append+join)的4种方法
Pandas教程15:多个DataFrame数据(保存+追加)为Excel表格数据

Pandas教程16:DataFrame列标题批量重命名+空df数据判断+列名顺序重排

Pandas教程17:关于json数据转化成DataFrame数据,消除警告提示的方法。

Pandas教程18:df数据中含有的关键字批量replace替换+删除行或列

Pandas教程19:groupby分组后,对列中指定关键字的组,进行求和运算。

假设你有这样的需求,某个df数据,朝代列中数据含有唐宋元明清,但是你只想对唐宋进行分组后的聚合运算。那么我们定义了一个包含关键字’唐’和’宋’的列表keywords。然后,我们使用isin方法来筛选出,'朝代列’中包含这些关键字的行。接下来,我们对筛选后的DataFrame按’朝代列’进行分组,并对每个组的’评分列’或’年龄列’进行求和。最后,我们使用reset_index方法将’朝代列’转换为普通列,以便得到一个包含聚合结果的DataFrame。

# @Author : 小红牛
# 微信公众号:WdPython
import pandas as pd

data = {'诗人': ['李白', '元好问', '李清照', '苏轼', '杜甫', '纳兰性德'],
        '朝代': ['唐', '元', '宋', '宋', '唐', '清'],
        '评分': [9.88, 7.65, 9.37, 9.5, 9.72, 8.16],
        '芳龄': [18, 26, 13, 26, 15, 28]}

# 1.创建一个示例DataFrame
df = pd.DataFrame(data)
print('1.原始DataFrame数据:'.center(30, '-'))
print(df)

# 定义包含多个关键字的列表
keywords = ['唐', '宋']
# 2.使用isin方法筛选出包含关键字的组
filtered_df = df[df['朝代'].isin(keywords)]
print('2.isin方法筛选的数据:'.center(30, '-'))
print(filtered_df)
# 3.对某一列进行求和操作
sum_result = filtered_df.groupby('朝代')['评分'].sum()
# 对聚合结果进行四舍五入,保留两位小数,单位为万
rounded_sums = sum_result.round(1).reset_index()
print('3.对筛选后的某一列,进行聚合操作'.center(30, '-'))
print(rounded_sums)

# 4.使用isin方法筛选出包含关键字的组,并对多列进行求和
columns_to_sum = ['评分', '芳龄']
sum_result2 = df[df['朝代'].isin(keywords)].groupby('朝代')[columns_to_sum].sum().reset_index()
print('4.对筛选后的多列,进行聚合操作'.center(30, '-'))
print(sum_result2)

输出内容:

-------1.原始DataFrame数据:-------
     诗人 朝代    评分  芳龄
0    李白  唐  9.88  18
1   元好问  元  7.65  26
2   李清照  宋  9.37  13
3    苏轼  宋  9.50  26
4    杜甫  唐  9.72  15
5  纳兰性德  清  8.16  28
--------2.isin方法筛选的数据:--------
    诗人 朝代    评分  芳龄
0   李白  唐  9.88  18
2  李清照  宋  9.37  13
3   苏轼  宋  9.50  26
4   杜甫  唐  9.72  15
------3.对筛选后的某一列,进行聚合操作-------
  朝代    评分
019.6
118.9
-------4.对筛选后的多列,进行聚合操作-------
  朝代     评分  芳龄
019.60  33
118.87  39

完毕!!感谢您的收看

----------★★历史博文集合★★----------

我的零基础Python教程,Python入门篇 进阶篇 视频教程 Py安装py项目 Python模块 Python爬虫 Json Xpath 正则表达式 Selenium Etree CssGui程序开发 Tkinter Pyqt5 列表元组字典数据可视化 matplotlib 词云图 Pyecharts 海龟画图 Pandas Bug处理 电脑小知识office自动化办公 编程工具 NumPy Pygame

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值