敲代码两年半的练习生
这个作者很懒,什么都没留下…
展开
-
【Matlab】基于粒子群优化算法优化BP神经网络的数据分类预测
BP神经网络是一种前向人工神经网络,由输入层、若干隐藏层和输出层组成。它通过前向传播计算输出,并通过反向传播算法来更新权重和偏置,以最小化预测值与真实值之间的误差。BP神经网络在数据分类预测问题中可以用于拟合非线性函数,并通过梯度下降法进行参数优化。原创 2023-07-27 10:01:39 · 442 阅读 · 0 评论 -
【Matlab】基于粒子群优化算法优化BP神经网络的时间序列预测(Excel可直接替换数据)
BP神经网络是一种前向人工神经网络,由输入层、若干隐藏层和输出层组成。它通过前向传播计算输出,并通过反向传播算法来更新权重和偏置,以最小化预测值与真实值之间的误差。BP神经网络在时间序列预测问题中可以用于拟合非线性函数,并通过梯度下降法进行参数优化。原创 2023-07-26 18:58:17 · 848 阅读 · 1 评论 -
【Matlab】基于粒子群优化算法优化BP神经网络的数据回归预测(Excel可直接替换数据)
BP神经网络是一种前向人工神经网络,由输入层、若干隐藏层和输出层组成。它通过前向传播计算输出,并通过反向传播算法来更新权重和偏置,以最小化预测值与真实值之间的误差。BP神经网络在回归问题中可以用于拟合非线性函数,并通过梯度下降法进行参数优化。原创 2023-07-26 18:18:48 · 1210 阅读 · 0 评论 -
【Matlab】基于遗传算法优化 BP 神经网络的时间序列预测(Excel可直接替换数据)
在时间序列预测问题中,我们可以使用均方误差(Mean Squared Error,MSE)作为BP神经网络的目标函数,用于衡量实际输出值与预测输出值之间的差距。对选出的父代个体进行交叉操作,通过模拟基因交换过程,生成新的个体。对交叉得到的子代个体进行变异操作,通过随机改变染色体中的某些基因值来引入新的解。采用基于适应度函数的选择策略,选择适应度较高的个体作为“父代”,用于产生下一代个体。表示第l-1层第i个神经元到第l层第j个神经元之间的连接权重,,第l层第i个神经元的输出(经过激活函数后的值)为。原创 2023-07-20 09:34:19 · 352 阅读 · 0 评论 -
【Matlab】基于遗传算法优化 BP 神经网络的数据分类预测(Excel可直接替换数据)
在数据分类问题中,我们可以使用交叉熵损失函数(Cross-Entropy Loss)作为BP神经网络的目标函数,用于衡量预测输出与实际类别标签之间的差距。对选出的父代个体进行交叉操作,通过模拟基因交换过程,生成新的个体。通过这样的遗传算法优化过程,我们可以寻找到BP神经网络的更优参数组合,从而提高BP神经网络在数据分类问题上的性能。对交叉得到的子代个体进行变异操作,通过随机改变染色体中的某些基因值来引入新的解。,第l层第i个神经元的输出(经过激活函数后的值)为。表示第l层第i个神经元的偏置。原创 2023-07-20 09:21:05 · 405 阅读 · 0 评论 -
【Matlab】基于遗传算法优化 BP 神经网络的数据回归预测(Excel可直接替换数据)
在数据回归问题中,我们通常使用均方误差(Mean Squared Error,MSE)作为目标函数,表示实际输出值与BP神经网络预测输出值之间的差距。在数据回归问题中,适应度函数可以是目标函数(如MSE)的倒数,因为我们希望最小化目标函数,而遗传算法追求最大化适应度。每次迭代,种群中的个体会不断进化,逐渐优化BP神经网络的参数,使得其在数据回归任务中表现更好。对选出的父代个体进行交叉操作,生成新的个体。交叉操作通过模拟生物学中的基因交换过程,将两个个体的染色体部分进行交换,产生新的个体。原创 2023-07-20 09:08:28 · 355 阅读 · 0 评论