【论文阅读】Towards End-to-End ECG Classification With Raw Signal Extraction and Deep Neural Networks

论文阅读:Towards End-to-End ECG Classification With Raw Signal Extraction and Deep Neural Networks

一、摘要

本文提出了一种具有信号对齐功能的深度学习方法,该方法有助于将原始心电图(ECG)信号从端到端分类为心跳类型,即正常心跳或不同类型的心律失常。从原始ECG信号中提取时域采样点,并从覆盖这些采样点的滑动时间窗口中提取连续矢量。这些向量中的每一个都包含完整心跳周期的连续采样点,不仅包括QRS波群,还包括P波和T波。与现有的心跳分类方法不同,在现有的心跳分类方法中,医生从原始ECG信号中提取手工制作的特征,而提出的端到端方法利用深度神经网络来基于对齐的心跳进行特征提取和分类。这种策略不仅消除了手工制作功能的需求,而且还为心跳分类提供了优化的ECG表示。对MIT-BIH心律失常数据库的评估表明,在相同的特异性下,拟议的患者独立分类器可以以高于当前最新技术至少10%的灵敏度检测室上性和室性异位搏动。更重要的是,存在广泛的工作点,其中拟议的分类器的灵敏度和特异性都高于最新分类器。提出的分类器还可以执行与特定于患者的分类器相当的功能,但同时具有患者独立性的优势。

二、数据

了MIT-BIH心律失常数据库中的连续ECG信号。要从ECG信号提取完整的心跳,我们需要定义什么是完整的心跳,然后执行心跳分段。由于R峰值通常出现在心跳的中间,因此我们可以将其用作定位完整心跳的锚点。通过使用[29]中的 Pan-Tompkins算法,可以准确确定R峰的位置(超过99%)。我们假设R峰位于其相应心跳的中心,因此,假定完整心跳的边界位于两个连续R峰的中间。基于此假设,完整的心跳包括三个连续R峰值的两个中点之间的采样点。
在这里插入图片描述
按照AAMI建议的做法,从数据集中删除了包含节奏拍子的四个记录。其余的44条记录被分为两个数据集(DS1和DS2),其中4个数据集包含来自22个记录的大约50,000个节拍。请注意,在[7],[10]和[17]中也使用了这种分割数据的方式。按照他们的评估协议(面向主题的评估方案),我们在一个实验(实验1)中对DS1进行了22倍交叉验证,并在另一实验(实验2)中将DS1用作训练集,将DS2用作测试集。 )。注意在Exp。如图1所示,每条记录依次用作测试数据,其他21条记录用作训练数据。该过程重复了22次,因此每个记录已被用作测试数据一次。结果,我们可以将我们的结果与以前的研究进行比较。

三、方法

本文提出了一种如图1所示的端到端ECG分类系统。该系统在一端接收原始ECG信号,并在另一端生成逐个心跳分类决策。在图中,预处理是指从连续ECG信号中提取心跳的过程,这涉及心跳分段和对齐。图1中的DNN 用于特征提取和分类,分别通过网络的下部和上部实现。DNN的设计将在II-C节中讨论
在这里插入图片描述
在这项工作中,我们使用了具有堆叠RBM的DNN,如图2所示。底层的RBM具有高斯可见节点和伯努利隐藏节点。其余的RBM在可见层和隐藏层均具有伯努利分布。在微调期间,预先训练的权重(w ^1个, w ^2 和 w ^3)用作初始权重,上部两层之间的权重(w ^4)以较小的随机数初始化。此外,训练集的30%用于在每个时期后计算网络的准确性,因此可以提前停止以防止过度拟合。注意,预训练步骤可以为网络提供必要的正则化[28],而早期停止策略则提供了在模型开始过拟合训练数据之前应运行多少次迭代的指导。
在这里插入图片描述

四、结果

实验一
在第一个实验中,将22倍交叉验证应用于DS1。表IV比较了[7]和端到端DNN分类器的性能。请注意,数据集中的F类和Q类所占的比例很小(小于1%)。因此,这两个类别的分类性能对整体性能的贡献不大。另一方面,S类和V类的比例要高得多(约10%),并且这两个类包含大部分的心律不齐。因此,我们专注于这两个类。为了提高S类和V类的分类性能,Chazal 等人(2002年)。 [7]研究了特征集的不同组合。为简单起见,表IV中显示了它们的最佳结果。可以看出,端到端DNN的整体精度远高于[7]。特别是,在相同的特异性下,我们的DNN对于S级和V级都实现了更高的灵敏度。
在这里插入图片描述
端到端分类器实现的N,S,V,F和Q类的MCC分别为0.67、0.26、0.67、0.01和0。为了获得端到端分类器的更均衡的MCC性能,请使用常量(δ)被添加到与类S和F对应的输出节点,以便分类器有更高的机会正确分类类S和F的实例。通过在DS1上进行交叉验证,我们发现 δ= 0.997可以将F类的MCC从0.01增加到0.20,而不会显着牺牲其他类的性能。更确切地说,何时δ= 0.997 如果将S,F,Q和Q的MCC添加到S,F的输出中,则N,S,V,F和Q的MCC分别变为0.59、0.34、0.51、0.20和0。

实验二
在第二个实验中,DS1和DS2分别用作训练集和测试集。表V显示了端到端分类器的性能以及[7],[10]和[17]中的最佳结果。与Exp。中的结果相似。如图1所示,我们的方法的整体准确性(表V中的端到端)远高于[7],[10]和[17]。端到端DNN不仅比[7],[10]和[17]的整体精度高得多,而且对S级和V级的灵敏度和特异性也更高。图8显示了此实验中端到端分类器的ROC曲线。它表明[7],[10]和[17]中的最佳性能低于DNN的ROC,这表明端到端方法非常有前途。
在这里插入图片描述
在这里插入图片描述

实验三
从数据集中检索到81,379个心跳,包括74,478个正常心跳和6,901个PVC心跳。为了进行公平的比较,我们还进行了8倍交叉验证。DNN具有与以前相同的结构(417–100–100–100–2),除了输出节点的数量。表VII显示了[11]和我们的端到端DNN中分类器的最佳性能。尽管[11]中的总体准确度很高(99.41%),但我们的准确率(99.70%)高了0.29%。此外,在非常高的特异性(99.89%)下,所提出的PVC类方法的灵敏度仍高于[11]。。与上一节中的五类分类相比,该两类问题要容易得多。不仅整体精度接近100%,而且还可以获得检测PVC拍的良好性能。
在这里插入图片描述

实验四
表VIII显示了[9],[12],[13]中特定于患者的ECG分类系统以及我们独立于患者的端到端ECG分类系统的性能。我们遵循[9],[12]和[13]中的实验方案。对于具有专家干预的针对特定患者的分类器[9],[12](模式1),为了尽可能公平,我们使用了24位患者的前5分钟ECG记录(记录号:200–234)来训练我们的患者独立分类器。为了评估分类器对“看过的”患者的表现,我们使用了这24例患者剩余25分钟的ECG信号进行测试。请注意,我们使用了24分钟患者的5分钟ECG信号来训练独立于患者的分类器。对于无需专家干预的特定于患者的分类器[13](模式2),为了评估分类器在“看不见”患者中的表现,我们根据DS1中22位患者的ECG记录训练了独立于患者的分类器,并进行了测试DS2中其他22位患者的分类器。表八表明,尽管患者独立,但我们的患者独立分类器在性能上可与[9],[12]和[13]中的患者特定分类器相媲美,如表的第五和第七列所示。请记住,任何特定于患者的分类器都需要一些特定于患者的数据或对每个新患者进行昂贵的注释过程,因此我们的独立于患者的分类器无疑具有优势。
在这里插入图片描述

五、讨论

本文介绍了端到端心电图分类系统。系统的一端接收原始的ECG信号,另一端给出逐个搏动的分类决策。提出了一种新的预处理方法,该方法涉及心跳分段和心跳对齐,以促进深度神经网络形成ECG信号的最佳表示并用于心跳类型的分类。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值