论文阅读:Inter-Patient ECG Classification With Symbolic Representations and Multi-Perspective Convolutional Neural Networks
一、摘要
本文为患者间心电图(ECG)心跳分类提供了一种新颖的深度学习框架。引入了一种专为ECG设计的符号化方法,该方法可以共同代表心跳的形态和节奏,并通过基线校正减轻患者间差异的影响。多视点卷积神经网络(MPCNN)使用心跳的符号表示来自动学习特征并对心跳进行分类。我们评估了我们的方法,以检测MIT-BIH心律失常数据集上室异位搏动(SVEB)和室性异位搏动(VEB)。与基于手动功能或深度学习模型的最新方法相比,我们的方法具有更高的性能:总准确度为96.4%,SVEB和VEB的F1分数分别为76.6%和89.7%。我们方法的消融研究验证了所提出的符号化方法和联合表示架构的有效性,这可以帮助深度学习模型学习更多一般特征,并提高看不见患者的泛化能力。因为我们的方法无需复杂的手工特征或专家的干预即可实现具有竞争力的患者间心跳分类性能,因此也可以进行调整以处理与ECG分类有关的其他各种任务。
二、数据
我们使用MIT-BIH心律失常数据库 [15]来评估我们提出的心跳分类方法的性能。该数据集包含48个半小时的两通道记录,这些记录是从47个人的24小时ECG记录中获得的。首先以0.1–100 Hz对ECG信号进行带通滤波,然后以360 Hz的采样频率进行数字化。遵循ANSI / AAMI EC57:1998标准[16]的建议, 不使用起搏器患者的四次录音。我们为每条记录使用Lead II信号。如表四所示,将MIT-BIH类映射为5种推荐的AAMI类,即源自窦房结的心跳(N),室上性异位搏动(S或SVEB),室性异位搏动(V或VEB),融合性心跳(F),和未知的拍子类型(Q)。
们使用MIT-BIH心律失常数据库提供的R峰的注释进行心跳分割。具体而言,对于每个R峰注释,将峰之前的110点和峰之后的145点(总共256个包含R峰的点)用于表示相应的心跳。也可以基于这些注释来计算RR间隔信息。
数据集分为两部分:用于建立分类模型的训练集(DS1)和用于评估我们提出的方法的性能的测试集(DS2)。该划分严格遵循De Chazal 等人 提出的方案 。[3],它根据不同的患者并考虑平衡类别来分离心跳数据。心跳分布和记录分区的详细信息如表V所示。
三、方法
我们提出的方法的总体架构如图1所示。我们模型的输入是原始ECG信号和心跳的RR间隔信息。这些数据将首先使用新颖的符号化方法转换为符号表示。然后,一个可训练的查找表将它们嵌入到联合心跳嵌入矩阵中。下游MPCNN自动从矩阵中提取有用的特征并对心跳类型进行分类。
1、符号基线矫正近似
我们首先介绍专门针对ECG信号设计的提议符号化方法,称为符号基线校正近似(SBCX)。在这里,我们通过将SBCX与时间序列广泛使用的符号化方法(称为符号聚合近似(SAX))进行比较,来解释SBCX的特殊考虑 [22]。SAX主要包括两个步骤:降维和符号化。
2、心跳嵌入矩阵
使用SBCX方法,我们将ECG信号转换为由符号组成的SBCX表示形式。使用包含所有可能符号的嵌入向量的查找表(可训练的权重矩阵),我们进一步将信号的符号序列转换为嵌入矩阵
应当注意,SBCX表示中的符号包含有关其相应幅度是否高于基线的重要信息。根据lead II中ECG特征波的形态, [1],基线以上的振幅点与QRS波,P波和T波(通常用于心电图的ECG特征波)直接相关。指示患者的健康状况)。因此,它们本能地对于心跳分类更有价值。受此观察启发,我们引入了信号嵌入矩阵的一种变体,该变体仅保留“正信号符号”(高于基线的幅度点)进行嵌入。其他“非正信号符号”的位置填充为零。图4在此设置下可视化心跳段的信号嵌入矩阵。我们将这种嵌入策略表示为正嵌入;使用所有信号符号的策略表示为全嵌入。
3、多角度CNN
我们提出了一种多视角卷积神经网络(MPCNN)从联合心跳嵌入矩阵中提取特征并预测输入心跳的类型(请参见图5)。基本网络模块由一维卷积层,最大池化层和批归一化层组成。这种层组合已被证明在许多应用中是有效的
四、结果
1.DS1上交叉验证
2.DS1训练、DS2测试
与非深度学习方法相比
与其他深度学习方法相比
3.除了对整体模型进行性能评估外,我们还对框架的不同组成部分进行了消融研究。在表XIII中,SBCX + RR代表了我们完整的模型:共同利用ECG信号的SBCX和RR间隔符号表示。SBCX代表模型去除了RR间隔嵌入通道输入。SX表示用广泛使用的归一化方法(z评分)进一步替代SBCX中的基线校正方法,这等效于替换米ø de (* ) 和 σ米ø dË在(8)与所述信号的平均值和标准偏差。RawSignal指示直接使用原始ECG信号作为MPCNN的输入。RawSignal + RR不仅利用原始信号输入,还在MPCNN的连接层中使用数字RR间隔功能。表XIII中的比较可以分别表示模型中不同组成部分(即基线校正和RR间隔嵌入)对良好分类性能的贡献。