论文阅读:Myocardial Infarction Severity Stages Classification From ECG Signals Using Attentional Recurrent Neural Network
一、摘要
心肌梗塞(MI)是一种致命的心脏病,由于缺乏流向心脏组织的血液而发生。根据症状发作的时间,可将其分为三个严重程度阶段:早期MI(EMI),急性MI(AMI)和慢性MI(CMI)。心电图(ECG)信号通常用于诊断具有特征性病理变化的MI。在临床实践中,准确的诊断和风险分层对优化各种治疗策略和临床结果至关重要。但是,大多数自动化方法仅专注于从健康对照(HC)中识别出MI患者。因此,在本文中,我们提出了一种新颖的基于多线索诊断关注的基于循环神经网络(MLDA-RNN),用于对HC受试者的三个MI严重程度阶段进行自动诊断。该方法系统地处理12导联ECG,以捕获每个ECG导联的多尺度时间相关性,从而改善分类。具体来说,我们首先采用RNN对12导联ECG信号中的时间变化进行编码。这些编码的向量被馈送到线索内注意模块,以汇总线索内的判别向量以获得线索注意表示。然后,潜在客户之间的注意模块会根据它们的临床相关性汇总这些代表载体,以获得用于可靠诊断的高级特征表示。使用PTBDB和STAFF III数据集中的12导联心电图,我们在不影响分类检测率的情况下实现了97.79%的整体准确性。
二、数据
对从公众可获得的STAFF III和PTB诊断数据库中获得的12导联ECG信号进行了评估[43]。在这项工作中,输入的ECG长度选择为4秒,因为像MI这样的进行性疾病需要大量连续的搏动进行分析[18]。它使我们能够很好地捕获拍子内部和拍子之间的依赖性。数据库的详细信息如下。
1)III号职员数据库:
从该数据库中选择EMI患者的ECG数据。STAFF III可从主要冠状动脉之一接受择期经皮腔内血管造影术的患者获得MI(EMI)数据的早期诱导进展。该数据库包含108名患者,这些患者具有9根导线(V1-V6,I,II和III),采样率为Fs 的) 1000小时ž 。根据肢体引线计算出其余三个引线(aVR,aVL和aVF),以形成标准的12引线ECG。
2)PTB诊断数据库:
可从该数据库获取AMI,CMI,非MI和HC的ECG数据。它包含来自290个个体的549条记录,其中包括148名MI患者,52 HC,其余均为非MI。每条记录包含12导联心电图Fŝ 1000 ^ h ž 。从患者注释中,根据梗塞年龄和干预措施,我们分别选择了梗塞年龄分别小于12-24小时和大于24小时的AMI和CMI患者的数据[3]。
三、方法
提出的端到端MLDA-RNN模型的概述。它主要由五个处理块组成:质量感知块,RNN编码块,线索内关注模块,线索间关注模块和分类块。
四、结果
(1)表IV总结了所提出的具有内部和内部线索注意模块的模型与没有关注模型(RNN-I)和只有内部线索关注(RNN-II)的模型的性能比较。这两个模型遵循与所提出的模型(图2(a))相同的架构,但在为分类器提供高级表示矢量之前,其生成方式略有不同。RNN-I使用每个前导RNN编码块中的最后一个隐藏矢量,并在将其输入分类阶段之前,将它们平均12个导联。另一方面,带有线索内关注模块的RNN-II将线索内相关的隐藏向量组合起来以形成WLAR,并将这些向量在所有12条线索中平均并馈入分类阶段。
(2)在医疗保健应用中,模型的可解释性与准确性一样重要,而大多数现有的基于DL的方法都缺乏[27],[36]。必须确定疾病的诊断是基于反映病理的真实ECG特征而不是数据集中的系统偏差。从这个角度来看,在本节中,针对不同的类别可视化并分析了所提议的模型的线索内和线索间注意权重。
在本节中,我们将提出的MLDA-RNN模型与现有方法在各个方面进行比较。从表V可以看出,所有现有方法仅从HC中进行了MI的鉴定。但是,我们讨论了MI严重程度分级的分类,这对于优化各种治疗策略至关重要。其次,某些现有方法[28] – [29] [30] [31]使用有限的导联心电图进行MI或特定的局部MI检测。从表V可以看出,这些方法导致泛化不佳,从[29],[30]可以明显看出因为平均准确度低于85%。如前所述,这些方法可能无法为各种局部MI提供可靠的诊断[4]。表V还突出显示了现有方法对R峰检测的依赖性。可以看出,大多数方法都需要单独的R峰检测作为预处理步骤。这增加了计算负担,并且在存在各种噪声的情况下也可能易于错误诊断[26]。