论文阅读:Learning to Segment Object Candidates(DeepMask)

DeepMask是一个目标检测网络,通过单个网络结构同时输出目标分割mask和预测分数。采用VGG-A预训练模型提取特征,通过1x1卷积得到目标热度图并上采样为mask,2x2池化层后接全连接层预测目标分数。DeepMask以较少的proposals实现高召回率,同时具备快速推理速度。尽管在物体边界精确性上有所不足,但整合了前背景分割、前景语义分割和实例分割任务。
摘要由CSDN通过智能技术生成

1 摘要

最近目标检测一般需要依赖于2个关键步骤:(1)尽可能有效率地提取目标proposals。(2)对提取到地这些proposals进行分类。与上面的不同,作者提出一个新网络结构DeepMask:通过一个网络分成两条不同路径,一条路径输出目标分割的mask;另一条路径输出对目标的预测分数。作者提出的该超过了目标propasal算法的最好效果。对比于先前的方法,作者的方法能够使用更少的proposal获得更高的召回率。

2 亮点

2.1 DeepMask结构

作者先使用在ImageNet上训练好的VGG-A网络(包含8个3*3的卷积层,5个2x2的max-pooling层,这里去掉最后一个max-pooling层)进行特征提取得到512x14x14的特征图,如下图:
在这里插入图片描述
对于512x14x14的特征图,网络分成两条路线:
① 通过1x1卷积层得到目标热度图,再进行双线性插值上采样得到Mask图。

② 经过一个2x2的池化层再经过全连接层得到每一类目标分数的预测。

2.2 损失函数

由于存在两条线路,因此联合损失函数是由两部分组成的,如下:
在这里插入图片描述
其中, f s e g m i j ( x k ) f^{ij}_{segm}(x_k) fsegmi

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值