- 博客(5)
- 收藏
- 关注
原创 使用YOLOv5-Lite在树莓派4b上部署车辆检测模型(三)——在树莓派4b上部署模型
使用YOLOv5-Lite在树莓派4b上部署车辆检测模型(一)——UA-DETRAC车辆检测数据集的处理-CSDN博客使用YOLOv5-Lite在树莓派4b上部署车辆检测模型(二)——使用数据集训练模型-CSDN博客在前面的两篇文章中,我们处理好了UA-DETRAC数据集,并使用这个数据集训练了v5Lite-e模型。现在我们有了训练出的pt格式的权重文件,暂且称为v5Lite-e.pt,接下来需要将这个权重文件转换格式,然后在树莓派4B上部署。
2024-05-27 11:18:42 1066 2
原创 使用YOLOv5-Lite在树莓派4b上部署车辆检测模型(二)——使用数据集训练模型
模型结构选择v5Lite-e.yaml;需要注意的是UA-DETARC_train是训练集,所以在split_train_val.py脚本中测试集的比例被设置成了零,仅在其中按8:2的比例划分出了训练集和验证集,所以后面的test.txt中其实是空的。这里提供两个脚本,split_train_val.py可按照指定的比例划分出训练集、验证集、测试集,dataset_path_set.py可以按照划分后的结果生成train.txt、val.txt、test.txt分别存不同集图片的存放地址。
2024-05-19 22:12:30 1111
原创 使用YOLOv5-Lite在树莓派4b上部署车辆检测模型(一)——UA-DETRAC车辆检测数据集的处理
UA-DETRAC 是一个具有挑战性的现实世界多目标检测和多目标跟踪基准。该数据集包含使用佳能 EOS 550D 相机在中国北京和天津的 24 个不同地点拍摄的 10 小时视频。视频以每秒 25 帧 (fps) 的速度录制,分辨率为 960×540 像素。UA-DETRAC 数据集中有超过 14 万帧和 8250 辆手动标注的车辆,总共有 121 万个标记的对象边界框,其中训练集约82085张图片,测试集约56167张图片。
2024-05-12 17:33:08 1557 5
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人