- 博客(480)
- 资源 (5)
- 收藏
- 关注
原创 【车载信息安全系列5】以 常用AES-128-CTR通信密钥可用于诊断密钥吗
通信密钥场景:AES-128-CTR高度适配,核心优势是流密码无填充、加解密逻辑一致、硬件加速效率高、抗重放易实现,是车载总线/网络通信密钥的优选;诊断密钥场景:AES-128-CTR不能单独使用,仅能作为“诊断数据加密的辅助密钥”,需结合身份认证、完整性校验、权限绑定机制,且不如AES-128-GCM适配;核心差异:通信密钥的核心是“加密数据”,CTR的流密码特性完美匹配;诊断密钥的核心是“认证+加密+权限”,CTR仅能满足加密需求,需补充其他安全机制。
2025-12-20 14:15:18
611
原创 【车载信息安全系列4】基于Linux中UIO的HSE应用实现
在传统Linux驱动模型中,硬件访问(如寄存器读写、中断处理)必须通过内核态驱动实现,开发难度高、周期长;内核层仅做最小化处理:内核态只负责“分配设备资源(如内存地址、中断号)+ 通知用户空间中断事件”,不处理具体的硬件逻辑;用户层实现核心逻辑:硬件的初始化、寄存器读写、数据交互等核心逻辑,全部在用户空间程序中完成。这种设计特别适合车载SoC的HSE、FPGA、专用加密芯片等“功能固定、无需内核态频繁干预”的硬件,既能降低驱动开发成本,又能让用户空间程序灵活控制硬件。核心定义:UIO是Linux内核的。
2025-12-20 14:08:13
720
原创 【车载信息安全系列3】限制使用指定密钥槽中的密钥
硬件层锁死槽位属性+驱动层过滤槽位ID/进程权限+系统层管控设备节点/SELinux+应用层封装隐藏槽位,四层防护层层拦截;关键特征:软件层(尤其是应用层)无权限指定槽位ID,只能通过封装的业务接口访问固定槽位,越权请求在驱动/硬件层直接被拒绝;安全核心:硬件层的权限配置是底线,软件层的限制是补充,即使软件层被部分绕过,硬件层仍能阻止越权访问。简单来说,车载SoC通过“让软件看不到、改不了、选不了”密钥槽ID的方式,实现对密钥槽使用的严格限制——软件只能按预设规则访问指定槽位,无法越权。
2025-12-20 14:04:41
873
原创 【车载信息安全系列2】车载控制器中基于HSE的多密钥安全存储和使用
在车载SoC的HSE中,密钥槽是硬件层面划分的逻辑存储单元规范化管理多密钥:车载场景需要存储多个密钥(如根密钥、AES密钥、签名密钥等),密钥槽通过唯一ID(如0~63)区分不同密钥,避免混淆;权限隔离:每个密钥槽可配置独立的访问权限(如“仅加密可用”“仅HSE内部调用”“禁止导出”),比如根密钥所在的槽位禁止任何外部读取,AES会话密钥槽位仅允许指定进程调用;简化密钥使用:应用层无需记住复杂的密钥存储物理地址,只需传入“槽位ID”即可调用密钥,HSE内部完成ID到实际密钥的映射,降低软件层复杂度;
2025-12-20 14:02:21
768
原创 【车载信息安全系列1】车载Linux系统常用的OpenSSL, HSE加密工作原理
AES-128-CTR加解密:OpenSSL通过引擎对接HSE,由HSE硬件完成AES伪随机流生成和XOR运算,软件层仅传递参数和接收结果,加解密逻辑一致且无块填充(适配任意长度输入);密钥存储:采用“分层保护+硬件隔离”策略,根密钥存OTP/eFuse,应用密钥由根密钥加密后存加密分区,使用时全程在HSE内部流转,无明文暴露;核心安全点:HSE是整个流程的安全核心,既加速运算,又保障密钥的生成、存储、使用全生命周期安全,符合车载场景的高安全要求。
2025-12-20 13:55:26
861
原创 深入解析Ghidra Python脚本开发:基础与实战
Ghidra Python脚本是逆向工程自动化的核心工具,通过调用其丰富的Java API,可实现从批量反编译、特征提取到自定义分析的全流程自动化。本文介绍的5个实战脚本覆盖了逆向分析中最常见的场景,开发者可基于这些案例扩展功能(如漏洞扫描、恶意代码特征匹配等)。掌握Ghidra Python脚本开发,能大幅提升逆向分析效率,将重复的手工操作转化为可复用的自动化流程。
2025-12-17 14:04:55
879
原创 【AUTOSAR AP R25】版本新增内容及AP架构发展趋势
属于Storage类别,采用守护进程(Daemon-based)模式,是对现有本地Persistency功能的扩展。核心能力:整合键值存储(KeyValueStorage)与服务接口,提供数据项的远程持久化存储服务,支持通过ara::com服务接口实现远程数据访问。
2025-12-12 10:41:28
606
原创 【AUTOSAR AP R25】Safe Hardware Acceleration 规范初探
实现层允许直接复用 DPC++、hipSYCL、ComputeCpp,仅在上层做“汽车封装”,降低移植成本。AUTOSAR 在 AP R25-11 首次发布。
2025-12-12 08:58:45
551
原创 【AUTOSAR AP R25】Safe HWA API解析
Safe HWA API 首次把“高性能异构计算”与“车规级功能安全”装进同一个头文件。对于 Tier1 和算法供应商来说,意味着:“写一次、跑遍所有加速器、过 ISO-26262 不再靠封装器。下一步,就等你把点云 pipeline 从 CUDA 迁移到ara::shwa,在 Orin、EyeQ6、Xilinx Versal 上跑出一套真正的“安全加速” demo。
2025-12-11 20:08:32
578
原创 【AUTOSAR AP R25】 安全硬件加速(Safe Hardware Acceleration)需求一览
AUTOSAR Adaptive Platform(AP)中 Safe Hardware Acceleration(SHWA)功能集提供一种标准化、可移植的方式,用于在 Adaptive Platform 中安全、高效地使用硬件加速器(如 GPU、FPGA、DSP);支持 Adaptive Application 在运行时调用硬件加速器进行并行计算,并确保数据完整性、错误处理、资源管理等安全性要求;为硬件加速器提供抽象接口,屏蔽底层硬件差异,实现跨平台兼容。类型内容新增需求(R25-11)
2025-12-11 19:56:38
684
原创 【AUTOSAR AP R25】State Management模块Suspend-to-RAM机制初识
是一种低功耗管理机制,其核心是将系统状态(CPU寄存器、内存数据等)保存到RAM中,关闭CPU和大部分外设电源,仅保留RAM供电;当系统被唤醒时,可快速恢复到休眠前的运行状态,无需重新启动系统。在AUTOSAR AP R25-11的State Management规范中,调用EnterSuspendToRam(超时1000ms)校验请求有效性,切换到Suspend状态。发送S2R休眠请求(TriggerX)系统进入S2R,仅RAM供电。检测到唤醒事件(如钥匙解锁)确认休眠就绪(OK)确认唤醒完成(OK)
2025-12-09 15:09:42
913
原创 【AUTOSAR AP R25】新规范Remote Persistency规范一览
即远程数据项,以键值对形式存储在KeyValueStorage中,支持任意基础或自定义C++类型,可通过ara::com接口访问。:Remote Persistency仅支持键值存储,不支持文件存储(已知局限性)。错误码代码描述1方法与存储的数据类型不匹配2指定键在存储中不存在3预配置字段无法删除4存储空间不足或超出配额5存储访问异常(如介质损坏、加密失败)
2025-12-09 10:28:05
961
原创 简单易懂介绍Transformer中Attention机制的演进与实现解析
而深度学习领域的Attention机制,本质是对这一认知模式的算法化复刻:它让模型在处理序列数据(如文本、语音)时,不再对所有输入信息“一视同仁”,而是通过计算“注意力权重”,动态分配计算资源到关键token上,从而解决传统模型(如RNN)处理长序列时的“信息稀释”问题。Transformer的核心是“Scaled Dot-Product Attention”和“多头Attention”,其实现可通过“逻辑推理规则”类比理解——每个模块的设计都对应明确的逻辑运算,确保“关联计算”的合理性和有效性。
2025-11-27 15:59:59
1071
原创 汽车嵌入式POSIX OS下高可靠性的文件存储的常用编程实现模式
临时目录中转模式通过纯文件系统API实现原子性操作,避免半写数据;管道抽象模式屏蔽底层存储差异,支持精细化的刷盘和寿命管理;资源预留模式提前规避资源不足问题,防止数据损坏和资源泄漏。
2025-11-27 15:40:00
939
原创 2025年汽车是如何被软件来定义的现状和未来
软件定义汽车的变革,早已超出了“给汽车加软件”的范畴。它正在把汽车从一个孤立的硬件产品,变成一个连接人、云、服务的智能终端,重构整个汽车行业的技术路线、商业模式和供应链结构。这场变革虽然充满挑战——从架构重构到人才短缺,从安全风险到法规滞后,但它带来的机遇更是前所未有的。未来的汽车,不再是“开不坏的铁疙瘩”,而是“越用越智能的移动伙伴”;车企也不再是“硬件制造商”,而是“出行服务提供商”。要实现这个愿景,需要车企、科技公司、学术界、监管机构的协同发力。
2025-11-20 20:07:40
215
原创 常见状态机类型解析与在汽车电子软件中的应用举例
HSM 将状态划分为父状态(Super State) 和子状态(Sub State),子状态继承父状态的行为(如入口动作、出口动作、默认迁移),仅定义自身特有的逻辑。其核心是 “状态分层 + 行为复用”。
2025-11-20 13:52:44
681
原创 白话讲解ARP4754B(民用飞机与系统研制指南)中“V模型”
核心定位:最顶层聚焦飞机整体需求与验证,决定“这架飞机要能飞多远、载多少人、多安全” ,所有设计都围绕飞机级需求展开。案例:以民航客机A320neo为例,飞机级需求会明确:功能需求:载客量150 - 240人、航程6000公里以上、具备跨洲际飞行能力;安全需求:满足FAA/EASA的适航标准,如发动机失效时仍能安全备降;性能需求:油耗比前代机型降低15%(通过新型发动机、气动优化实现)。
2025-11-17 15:56:56
829
原创 编程范式综论:从思维哲学到程序形态简论
*编程范式(Programming Paradigm)**是一种关于如何思考与表达计算的哲学。它决定了程序员看待“问题”与“解法”的方式,就像不同的艺术流派表达同一个主题。在命令式编程中,程序员像将军——命令计算机执行每一步操作。在函数式编程中,程序员像数学家——定义映射关系与函数组合。在逻辑编程中,程序员像哲学家——提出事实与规则,让推理系统自行得出结论。编程范式的演化,也是人类在计算机世界中对“思维与表达自由”的持续探索。编程范式是技术的表象,更是思维的演化史。
2025-11-09 22:59:40
790
原创 电动化筑基:智能社会的能源革命与产业重构
在这场变革中,汽车电动化撕开了产业转型的第一道裂口,机器人电动化重构了生产范式,eVTOL则开辟了立体交通新维度。但电动化的触角远不止于此:电动船舶正改写航运业的碳排放版图,电动工程机械在工地上实现精准作业,电动农业装备正在重塑现代农业形态,就连航空领域也开始孕育电动化的种子。这些多元场景的电动化改造,共同构建起一个以电能为核心的新型能源生态,而这个生态恰恰为智能化提供了响应速度更快、控制精度更高、数据采集更全的运行载体。电动化与智能化的深度耦合,正推动人类社会从工业文明的“机械时代”迈向智能文明的“数字时
2025-11-04 15:56:13
798
原创 PX4传感器冗余与仲裁算法剖析:设计原理、源码实现与工程实践(下部)
PX4的传感器冗余与仲裁机制是“分布式架构+工程化算法+实用化工具”的有机结合,其核心技术路线可概括为“分层监测-动态仲裁-自适应融合”,通过驱动层硬件校验、中间层健康巡检、状态层创新检验的三重防护,实现了“故障可检测、切换可平滑、融合可信赖”的工业级可靠性目标。
2025-11-03 09:45:50
1014
原创 PX4传感器冗余与仲裁算法剖析:设计原理、源码实现与工程实践(上部)
模块通过配置文件(物理约束校验读取传感器量程参数(如IMU加速度量程),预留10%容错区间(如±16g量程对应±17.6g容错阈值),当数据超出阈值时标记fault// 10%容错i < 3;一致性校验静态状态下(为false),校验加速度矢量模长与重力加速度的偏差:正常情况下,静止IMU的加速度合矢量应接近9.81 m/s²(偏差<0.5 m/s²);
2025-11-03 09:43:32
903
原创 白话解析基于人类反馈的强化学习(RLHF)在LLM微调的工作原理
为了快速理解 **基于人类反馈的强化学习(RLHF)**的基本原理,本文介绍一个简单的模型思路,并且用具体的案例来解析整个微调的过程。本文适合初学者快速了解基于人类交互反馈的强化学习在LLM微调中是如何起作用的。什么是**基于人类反馈的强化学习(RLHF)**的方法。以ChatGPT的训练为例,在其训练过程中,首先会使用人工编写的高质量示例、公开的指令微调数据集等构建SFT数据集,对模型进行监督微调。
2025-10-31 13:41:47
819
原创 利用机器学习优化CPU调度的一些思路案例
状态空间(State)向量形式表示,包含:当前任务的特征(优先级、内存占用、I/O频率)、系统状态(各核心负载、缓存命中率、CPU频率),维度通常为20-50维(根据采集指标数量调整)。动作空间(Action)离散动作:任务分配的核心编号(如8核CPU对应0-7)、时间片长度(5ms/10ms/20ms)、是否允许抢占(是/否);连续动作:CPU频率调整(1.0GHz-2.5GHz,步长0.1GHz)、任务优先级微调(±1级,不超出系统优先级范围)。奖励函数(Reward)
2025-10-28 11:35:27
676
原创 操作系统设计(2025):核心概念、现存挑战与未来发展趋势
操作系统(Operating System, OS)作为计算领域的基石软件,历经数十年演进,已从早期简单的资源调度工具,发展为支撑复杂多样计算环境的核心系统。它不仅负责管理计算机硬件与软件资源,更承担着保障系统安全、优化资源利用率、实现用户与设备高效交互的关键职责。
2025-10-28 10:33:45
1272
原创 一种AUTOSAR Adaptive 不确定性通信问题及确定性解决方案
AUTOSAR Adaptive的不确定性通信问题,本质是“物理通信的随机性”与“安全功能的确定性需求”之间的矛盾。通过“逻辑时间约束屏蔽延迟干扰、动态管理适配任务变化、分层通信兼顾效率”的思路,可在AP架构中构建确定性通信机制——如AP-LET协议,既能保留AP的服务化与动态扩展优势,又能满足汽车安全相关功能的时序与数据可靠性要求,为软件定义汽车的分布式实时系统提供核心技术支撑。
2025-10-27 20:12:54
1013
原创 C++中的奇异递归模板模式CRTP
CRTP是C++模板元编程的重要模式,其核心是通过“派生类作为基类模板参数”实现编译期多态。它在保留多态灵活性的同时消除了虚函数的运行时开销,广泛应用于性能敏感场景(如算法库、游戏引擎)、功能注入(Mixin)和编译期接口检查。理解CRTP有助于深入掌握C++的静态类型特性和高效编程技巧。
2025-10-27 17:20:09
480
1
原创 【AUTOSAR AP】通信模型中两个基本概念SI和 Port白话解析
SI是AUTOSAR AP中服务内容的标准化描述,本质是“应用间交换信息的‘语言规范’”——它明确规定了服务提供方(Server)能提供哪些功能、传递哪些数据,以及服务使用方(Client)如何调用这些功能、接收这些数据,完全不依赖底层软件组件或传输协议。Ports是AUTOSAR AP中应用与外部交互的“物理入口/出口”
2025-10-25 16:56:21
482
原创 AUTOSAR AP通信管理规范:设计背景与技术实现解析
AUTOSAR AP通信管理规范通过抽象化设计、原生服务模型、双模式交互、内置安全机制和灵活的实例管理,系统性解决了传统车载通信方案的核心痛点。其设计既满足了汽车电子对高安全性、实时性的严苛要求,又为功能扩展和协议升级提供了灵活性,成为下一代车载电子系统的重要基础。
2025-10-25 16:39:11
575
原创 cpp-stub工作原理详细举例解析
cpp-stub的核心实现原理是通过内存操作(修改函数入口地址或虚函数表)拦截目标函数调用,重定向到 Stub 实现,并利用 RAII 机制确保测试后自动恢复。其设计兼顾了灵活性(支持多种函数类型)和安全性(自动恢复),是单元测试中隔离外部依赖的轻量解决方案,但受限于平台和编译器特性,使用时需注意兼容性和函数类型限制。阶段核心操作目的编译期生成Base类的 VTable,检查与原函数的签名兼容性,实例化cpp-stub模板代码为运行期替换准备数据结构和类型检查运行期。
2025-10-17 15:06:33
903
原创 软件本质问题的独特性:与数学、哲学的深层关联及本质边界
软件的本质问题与数学、哲学的类似,在于三者都用“抽象与逻辑”作为思考工具,且都受限于人类认知边界;但核心区别在于:数学是“抽象逻辑的自洽系统”,哲学是“人类认知的终极追问”,而软件是“抽象逻辑的现实应用”——软件的本质问题,是“将数学的逻辑工具、哲学的认知方向,落地到现实场景时遇到的适配困难”,这是数学和哲学都不涉及的独特领域。
2025-10-14 09:28:53
680
原创 聊聊代码编程助手类的人工智能工具是不是软件工程中的银弹
软件的本质是“现实问题的数字化映射”,其核心困难源于“现实的复杂性”与“代码的精确性”的天然矛盾——这种矛盾不会因AI的出现而消失。当前AI代码助手(如Copilot、CodeLlama)、AI测试工具(如Selenium IDE AI版)已深度融入研发流程,但它们的核心价值是“降低偶然困难的成本”“辅助人类应对本质困难”,而非“颠覆软件工程”或成为“银弹”。软件研发是“多人协作”的过程,需求的“一致性”和“可变性”往往因“信息差”被放大——AI可作为“协作中枢”,统一信息口径,降低需求变更的沟通成本。
2025-10-14 09:12:13
848
原创 汽车嵌入式软件架构中的接口设计:基于面向对象方法论的实践与优化
抽象与契约是接口设计的第一原则,决定了接口的本质价值。定义行为规范:接口的核心价值在于明确"能做什么"而非"如何做",通过方法签名定义行为边界。在汽车嵌入式软件中,这意味着接口应聚焦于功能意图而非实现细节。例如,动力域控制器中的电池状态监测接口应定义(获取SOC值)这样的行为,而非(读取ADC通道3)这类具体操作。前者表达了功能意图,后者则暴露了实现细节,会因硬件变化而失效。建立使用契约:接口为交互双方提供了具有法律效应的"契约",明确规定了输入输出、前置条件、后置条件和异常处理机制。
2025-10-11 09:25:01
1016
原创 三大数学工具在深度学习中的本质探讨:从空间表示到动态优化
深度学习的强大泛化能力并非源于单一技术突破,而是线性代数、概率论与微积分三大数学工具协同作用的结果。本文从数学本质出发,剖析三者在深度学习中的核心定位——线性代数构建“空间表示与变换的骨架”,概率论提供“不确定性的量化标尺”,微积分赋予“动态优化的动力源”,并通过可视化流程与实例,揭示三者如何形成闭环,支撑从数据输入到模型收敛的全链路。现实世界的信息存在天然不确定性(如传感器噪声、数据标注误差),概率论的核心是用数学模型描述不确定性,并将模糊的“任务需求”转化为可量化的优化目标。不确定性的量化。
2025-10-10 18:58:04
1049
原创 【AUTOSAR】AUTOSAR 错误处理机制:深入理解 ErrorDomain
AUTOSAR 定义了一套全面的错误处理框架,旨在解决分布式嵌入式系统中的错误检测、报告和恢复问题。统一性:提供一致的错误处理接口,使不同模块和供应商的软件能够无缝协作可追溯性:确保每个错误都能被准确追踪到其来源和上下文灵活性:允许不同模块根据自身需求定义特定错误,同时保持整体一致性安全性:在错误处理过程中不引入新的安全风险在这个框架中,(错误域)、ErrorCode(错误码)和Exception(异常)是三个核心概念,它们共同构成了 AUTOSAR 错误处理的基础。AUTOSAR 标准在。
2025-10-10 11:07:33
894
原创 一篇有意思的论文:人们是如何使用ChatGPT的研究
用途高度匹配职业核心任务:管理职业以“写作”为主(占工作消息52%),计算机职业以“技术帮助”为主(37%),教育职业以“实用指导(辅导)”为主(28%),但所有职业的TOP通用工作活动(GWA)高度一致——“记录文档”“决策解决问题”“创造性思考”均位列前3,证明AI对知识工作的影响具有普遍性。职业是工作场景使用的核心影响因素,按工作消息占比排序:计算机相关职业(57%)>管理与商业(50%)>工程与科学(48%)>其他专业职业(法律/教育/医疗,44%)>非专业职业(行政/服务/蓝领,40%);
2025-09-25 19:13:35
1131
原创 提高测试效率的途径:gtest的参数化测试(Parameterized Tests) 机制介绍
以下示例将展示如何使用GTest的参数化测试结合GMock来自动生成多组输入输出测试用例。我们以一个简单的数学计算工具类为例,测试其加法、减法和乘法功能,通过参数化方式一次性定义多组测试数据。源代码包含三个文件:math_utils.h,计算器的接口定义文件math_utils.cpp,计算器的实现文件math_utils_test.cpp,计算器的测试文件代码解析解析说明核心实现原理这个例子使用了GTest的参数化测试(Parameterized Tests) 机制,通过以下步骤实现多组测试
2025-09-23 14:43:53
422
原创 正确看待和使用TDD测试驱动开发
对于数据仓库、机器学习项目,核心逻辑依赖数据(如“用户画像模型”依赖用户行为数据训练),而非固定的代码逻辑。此时TDD无法提前定义测试用例——例如,无法用测试用例验证“模型推荐准确率”(准确率随数据变化),只能通过后期数据评估,TDD的“测试先行”失去意义。
2025-09-23 13:35:22
1182
原创 锂电池取代铅酸电池作为低压启动电池及其老化率计算常用算法
铅酸电池在燃油车时代是“高性价比方案”,但在新能源车上,其低效、笨重、短命的特性成为能耗与体验的瓶颈;锂电池的技术突破(低温放电、长寿命、高集成)与其在智能汽车中的战略价值(能耗优化、空间释放、生态协同)形成共振,推动华为做出选择。未来,随着48V锂电系统(如比亚迪已量产)的普及,静态电池的能量密度还将提升50%,进一步巩固锂电在新能源汽车中的地位——这不是简单的“成本替换”,而是汽车智能化浪潮下的技术升维。应用场景推荐算法精度要求核心优势消费电子(手机)基础容量衰减法±5%以内。
2025-09-18 19:58:20
1240
原创 大型语言模型 (LLMs) 的演进历程:从架构革命到智能涌现
回顾 LLMs 的发展历程,我们可以清晰地看到技术突破的脉络:Transformer 架构解决了并行计算难题,预训练 + 微调模式实现了知识迁移,规模扩张带来了能力涌现,人类反馈优化提升了实用价值。从 GPT-3 的 1750 亿参数到 Gemini 1.5 的百万 token 窗口,每一次技术进步都不仅是规模的简单增长,更是架构创新与工程实践的结合。当前 LLMs 仍面临诸多挑战:模型幻觉(生成错误信息)、推理可解释性差、训练能耗过高、安全风险等。
2025-09-18 11:21:47
1169
原创 大语言模型(LLM)的数学能力探秘——现状、方法与挑战
好,我们来总结一下今天这篇文章的重点:为什么研究:数学是检验AI智能水平的试金石,有巨大应用潜力。研究什么:问题类型多样,从算术到几何证明,需要构建丰富的数据集进行评估。怎么研究:方法三层演进——从直接提问,到借助计算工具,再到专门的微调训练。现状如何:成绩显著但问题突出,尤其在稳定性、泛化能力和人性化交互上存在巨大挑战。未来方向:核心目标是让AI从“刷题机器”转变为真正“理解数学”并能与人类协同的智能体。
2025-09-18 10:38:25
1191
车载系统高安全Linux应用软件实现方案评审:基于ISO 26262的功能安全与实时性合规设计检查
2025-11-04
航空航天领域IMA与AFDX在A-17‘Zephyr’飞机构建中的集成架构设计及其网络系统实现研究
2025-01-24
信息安全:不可饶恕的安全漏洞及其评估指标
2024-11-04
Think DSP_ Digital Signal Processing in Python
2017-01-08
pyspark如何实现树层次结构的深度遍历
2023-07-25
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅