1326【例7.5】 取余运算(mod)

时间限制: 1000 ms         内存限制: 65536 KB
提交数: 11777     通过数: 5413 

【题目描述】

输入b,p,k的值,求b^p mod k的值。其中b,p,k×k为长整型数。

【输入】

输入b,p,k的值。

【输出】

求b^p mod k 的值。

【输入样例】

2 10 9

【输出样例】

2^10 mod 9=7

自己的代码(长整型运算可能会存在超时间复杂度和内存的情况): 

#include <iostream>
#include <cmath>
using namespace std;
int main()
{
	int i;
	long long int a=1,b,p,k,n,s;
	scanf("%lld %lld %lld",&b,&p,&n);
	k=b;
	if(p==0) s=1;
	else
	{
	for(i=1;i<p;i++)
	{
		b=k*b;
	}
	s=b%n;
	}

	printf("%lld^%lld mod %lld=%lld",k,p,n,s);
    //cout<<k<<"^"<<p<<" mod "<<n<<"="<<s;
	return 0;
}

书上的代码:

#include <iostream>
#include<cstdio>
using namespace std;
int b,p,k,a;
int f(int p)        //利用分治算法求b^p%k;
{
	if(p==0) return 1;        //b^0 % k =1 
	int tmp=f(p/2)%k;
	tmp=(tmp*tmp)%k;
	if(p%2==1)
	tmp=(tmp *(b%k))%k;        //b^p % k = (b^(p/2))^2 % k
    if(p % 2 == 1)
    tmp=(tmp * (b%k)) % k;    //如果p为奇数,则b^p % k = ((b^(p/2))^2)*b % k
	return tmp;
}

int main()
{
	cin>>b>>p>>k;          //读入三个数
	int tmpb=b;           //将b的值备份
	b%=k;                //防止b的值太大
	printf("%d^%d mod%d=%d\n",tmpb,p,k,f(p));        //输出
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值