(部分不懂,笔记整理未完成)【图论】差分约束

本文详细介绍了差分约束系统,包括其定义、性质及如何转换为图论问题。通过实例解析了如何利用最短路算法解决差分约束问题,并提供了模板题目的解题思路。此外,还讨论了在构建图时建立超级源点的重要性以及如何判断负环。
摘要由CSDN通过智能技术生成

知识点


一. 前置知识:判断负环

二.差分约束

差分约束系统即为n元一次不等式组,每个约束条件都是由两个变量作差构成的,形如x_i $ -- $x_j\leqslant c_k,目标为求出一组解可以满足所有约束条件。

x_i $ -- $x_j \leqslant c_k可变形为x_i \leqslant x_j + c_k,与最短路中三角形不等式 dis[y] \leqslant dis[x]+v 相似,于是将不等式组中的变量看作点,每个约束条件x_i $ -- $x_j \leqslant c_k 为从节点 j 向节点 i 连一条边权为 c_k 的有向边,在跑完最短路后,x_i=dis[i] 为差分约束系统中的一组解,若存在负环和终点不可达时,无解。

x_i - x_j \geqslant c_k 变形为 x_j - x_i\leqslant - c_k ;

x_i $ -- $x_j < c_k 变形为 x_i $ -- $x_j \leq c_k - 1 ;

x_i - x_j> c_k 变形为 x_i-x_j \geqslant c_k+1 ;

x_i - x_j=c_k 变形为 x_i - x_j \leqslant 0 且  x_i - x_j \geqslant 0

必要时,建一个超级源点。

那么,什么时候需要建立超级原点呢?

有的时候,为了保证整个区间的连通的,就需要建立一个超级源点使得整个图是连通的。但是需要注意的是,在正常建边的时候,如果是从大指向小,这个时候我们建立超级源点的时候就也应该遵循这个原则,如果是是从小指向大的,建立超级源点的时候反过来即可。

!求解最大解用最短路,求解最小解用最长路


模板题:洛谷 P5960 【模板】差分约束算法 <

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值