面试算法题:O(nlogn)查询l~r区间内k的个数

查询用户文章喜好

我们对用户按照它们的注册时间先后来标号,对于一类文章,每个用户都有不同的喜好值,我们会想知道某一段时间内注册的用户(标号相连的一批用户)中,有多少用户对这类文章喜好值为k。因为一些特殊的原因,不会出现一个查询的用户区间完全覆盖另一个查询的用户区间(不存在L1<=L2<=R2<=R1)。

输入描述:

输入: 第1行为n代表用户的个数 第2行为n个整数,第i个代表用户标号为i的用户对某类文章的喜好度 第3行为一个正整数q代表查询的组数 第4行到第(3+q)行,每行包含3个整数l,r,k代表一组查询,即标号为l<=i<=r的用户中对这类文章喜好值为k的用户的个数。 数据范围n <= 300000,q<=300000 k是整型

输出描述:

输出:一共q行,每行一个整数代表喜好值为k的用户的个数

输入例子1:

5
1 2 3 3 5
3
1 2 1
2 4 5
3 5 3

输出例子1:

1
0
2

例子说明1:

样例解释:
有5个用户,喜好值为分别为1、2、3、3、5,
第一组询问对于标号[1,2]的用户喜好值为1的用户的个数是1
第二组询问对于标号[2,4]的用户喜好值为5的用户的个数是0
第三组询问对于标号[3,5]的用户喜好值为3的用户的个数是2

解法思路

分块搜索

  • 若查询1次区间,可以将区间排序,统计即可
  • 1 0 6 10^6 106次查询,不能每次都排序
  • 将数据大约分为 s q r t ( n ) sqrt(n) sqrt(n)块,存储两个数组分别是原数组和每块排好序的数组
  • 分为2种情况
1. 查询的左右端点在同一块
2. 查询的左右端点在不同一块
  • 第一种情况遍历即可,复杂度不超过 O ( s q r t ( n ) ) O(sqrt(n)) O(sqrt(n))
  • 第二种情况在头尾两块遍历,中间的块(若有)则二分查找(预处理时每块排序)

参考代码

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <iostream>
using namespace std;
#define N 300000

int a[N + 5], b[N + 5];

int getLtoR(int l, int r, int k) {
    int cnt = 0;
    for (int i = l; i <= r; i++) {
        if (a[i] == k) cnt++;
    }
    return cnt;
}

int halfSearch(int l0, int r0, int x) {
    int l = l0, r = r0, mid;
    while (l < r) {
        mid = (l + r) / 2;
        x <= b[mid] ? r = mid : l = mid + 1;
    }
    return r;
}

int main() {
    int n, q, m;
    scanf("%d", &n);
    for (int i = 1; i <= n; i++) {
        scanf("%d", &a[i]);
        b[i] = a[i];
    }
    m = sqrt(n);
    for (int i = 1; i <= m + 1; i++) {
        if ((i - 1) * m + 1 > n) break;
        sort(b + (i - 1) * m + 1, b + min(i * m, n) + 1);
        /*
        for (int j = (i - 1) * m + 1; j <= min(i * m, n); j++)
            printf("%d ", b[j]);
        printf("\n");
        */
    }
    scanf("%d", &q);
    while (q--) {
        int l, r, k;
        scanf("%d%d%d", &l, &r, &k);
        int lx = (l - 1) / m + 1, rx = (r - 1) / m + 1, ans = 0;
        if (lx == rx) {
            ans = getLtoR(l, r, k);
        } else {
            ans = getLtoR(l, lx * m, k) + getLtoR((rx - 1) * m + 1, r, k);
            for (int i = lx + 1; i <= rx - 1; i++) {
                int left = halfSearch((i - 1) * m + 1, i * m, k);
                // printf("%d\n", left);
                if (b[left] == k) {
                    int right = left;
                    while (b[right + 1] == k && right + 1 <= i * m) right++;
                    ans += right - left + 1;
                }
            }
        }
        printf("%d\n", ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值