查询用户文章喜好
我们对用户按照它们的注册时间先后来标号,对于一类文章,每个用户都有不同的喜好值,我们会想知道某一段时间内注册的用户(标号相连的一批用户)中,有多少用户对这类文章喜好值为k。因为一些特殊的原因,不会出现一个查询的用户区间完全覆盖另一个查询的用户区间(不存在L1<=L2<=R2<=R1)。
输入描述:
输入: 第1行为n代表用户的个数 第2行为n个整数,第i个代表用户标号为i的用户对某类文章的喜好度 第3行为一个正整数q代表查询的组数 第4行到第(3+q)行,每行包含3个整数l,r,k代表一组查询,即标号为l<=i<=r的用户中对这类文章喜好值为k的用户的个数。 数据范围n <= 300000,q<=300000
k是整型
输出描述:
输出:一共q行,每行一个整数代表喜好值为k的用户的个数
输入例子1:
5
1 2 3 3 5
3
1 2 1
2 4 5
3 5 3
输出例子1:
1
0
2
例子说明1:
样例解释:
有5个用户,喜好值为分别为1、2、3、3、5,
第一组询问对于标号[1,2]的用户喜好值为1的用户的个数是1
第二组询问对于标号[2,4]的用户喜好值为5的用户的个数是0
第三组询问对于标号[3,5]的用户喜好值为3的用户的个数是2
解法思路
分块搜索
- 若查询1次区间,可以将区间排序,统计即可
- 1 0 6 10^6 106次查询,不能每次都排序
- 将数据大约分为 s q r t ( n ) sqrt(n) sqrt(n)块,存储两个数组分别是原数组和每块排好序的数组
- 分为2种情况
1. 查询的左右端点在同一块
2. 查询的左右端点在不同一块
- 第一种情况遍历即可,复杂度不超过 O ( s q r t ( n ) ) O(sqrt(n)) O(sqrt(n))
- 第二种情况在头尾两块遍历,中间的块(若有)则二分查找(预处理时每块排序)
参考代码
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <iostream>
using namespace std;
#define N 300000
int a[N + 5], b[N + 5];
int getLtoR(int l, int r, int k) {
int cnt = 0;
for (int i = l; i <= r; i++) {
if (a[i] == k) cnt++;
}
return cnt;
}
int halfSearch(int l0, int r0, int x) {
int l = l0, r = r0, mid;
while (l < r) {
mid = (l + r) / 2;
x <= b[mid] ? r = mid : l = mid + 1;
}
return r;
}
int main() {
int n, q, m;
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
b[i] = a[i];
}
m = sqrt(n);
for (int i = 1; i <= m + 1; i++) {
if ((i - 1) * m + 1 > n) break;
sort(b + (i - 1) * m + 1, b + min(i * m, n) + 1);
/*
for (int j = (i - 1) * m + 1; j <= min(i * m, n); j++)
printf("%d ", b[j]);
printf("\n");
*/
}
scanf("%d", &q);
while (q--) {
int l, r, k;
scanf("%d%d%d", &l, &r, &k);
int lx = (l - 1) / m + 1, rx = (r - 1) / m + 1, ans = 0;
if (lx == rx) {
ans = getLtoR(l, r, k);
} else {
ans = getLtoR(l, lx * m, k) + getLtoR((rx - 1) * m + 1, r, k);
for (int i = lx + 1; i <= rx - 1; i++) {
int left = halfSearch((i - 1) * m + 1, i * m, k);
// printf("%d\n", left);
if (b[left] == k) {
int right = left;
while (b[right + 1] == k && right + 1 <= i * m) right++;
ans += right - left + 1;
}
}
}
printf("%d\n", ans);
}
return 0;
}