P1290 欧几里德的游戏

欧几里德的后裔Stan和Ollie玩数字游戏,通过减去对方数的倍数来决定胜负。当较大数是较小数的倍数或大于等于其两倍时,先手胜。对于特定情况,先手唯一选择对应下一状态的反结果。通过代码实现,可确定胜利者。
摘要由CSDN通过智能技术生成

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


题目内容:

来源:

P1290 欧几里德的游戏

题目描述

内容

欧几里德的两个后代 Stan 和 Ollie 正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的。给定两个正整数 MM 和 NN,从 Stan 开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数不能小于 00。然后是 Ollie,对刚才得到的数,和 M,NM,N 中较小的那个数,再进行同样的操作……直到一个人得到了 00,他就取得了胜利。下面是他们用 (25,7)(25,7) 两个数游戏的过程:

Start:(25,7)(25,7)

Stan:(11,7)(11,7)

Ollie:(4,7)(4,7)

Stan:(4,3)(4,3)

Ollie:(1,3)(1,3)

Stan:(1,0)(1,0)

Stan 赢得了游戏的胜利。

现在,假设他们完美地操作,谁会取得胜利呢?

输入格式

本题有多组测试数据。

第一行为测试数据的组数 C C C。 下面 C C C 行,每行为一组数据,包含两个正整数 M M M, N N N ( ( (

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值