点集配准与场景流估计技术解析
在计算机视觉领域,点集配准和场景流估计是两个重要的研究方向。点集配准旨在将不同来源的点集对齐,而场景流估计则是恢复场景中三维流场的信息。下面将详细介绍相关的方法和技术。
引力方法用于非刚性点集配准
引力方法是一类基于物理原理的点集配准方法,主要包括刚性GA、BH - RGA和NRGA等。这些方法基于参考点集产生的力场中的粒子动力学。
实验结果与定性分析
- 缺失数据实验 :在处理缺失数据的实验中,NR - ICP、TPS - RPM和CPD等方法可能会对模板进行拉伸或膨胀,而NRGA通过由形状曲率参数化的吸引力函数,将点移向合适的区域,表现出更好的稳定性,误差在不同场景和数据集之间变化不大。
- 图像配准实验 :在图像配准场景中,以人脑CT的二维点集为例,NRGA展现出良好的性能。
- 人脸配准实验 :在人脸配准方面,使用BU - 3DFE数据集,模板和目标人脸在表情和缩放因子上存在差异。NRGA借助局部感知的全局拓扑保持CCM算子,实现了高对应精度和几何一致性,且仅使用点位置信息。
- 真实数据实验 :将包含4k点的粗糙合成人脸模板与两个多视图系统获取的真实人头扫描数据进行配准。第一个扫描数据包含复杂细节如卷发和粗糙皮肤膜,部分数据缺失;第二个扫描数据是原始的、带有低振幅噪声的三维重建数据。结果表明,NRGA能在这些具有挑战性的场景中准确地将模板与扫描数据匹配,尤其是对第二个扫描数据的匹配精度远高于其他非刚性点集配准方
订阅专栏 解锁全文
33

被折叠的 条评论
为什么被折叠?



