数组A和数组B,里面都有n个整数。数组C共有n^2个整数,分别是A[0] * B[0],A[0] * B[1] ......A[1] * B[0],A[1] * B[1]......A[n - 1] * B[n - 1](数组A同数组B的组合)。求数组C中第K大的数。
例如:A:1 2 3,B:2 3 4。A与B组合成的C包括2 3 4 4 6 8 6 9 12共9个数。
Input
第1行:2个数N和K,中间用空格分隔。N为数组的长度,K对应第K大的数。(2 <= N <= 50000,1 <= K <= 10^9) 第2 - N + 1行:每行2个数,分别是A[i]和B[i]。(1 <= A[i],B[i] <= 10^9)
Output
输出第K大的数。
Input示例
3 2 1 2 2 3 3 4
Output示例
9
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn=5e4+100;
LL a[maxn],b[maxn],n;
LL count(LL x)
{
LL i,j,ans;
j=n;
ans=0;
for(i=1;i<=n;i++) {
for(;j>=0;) {
if(a[i]*b[j]>x) j--;
else break;
}
ans+=j;
}
return ans;
}
int main()
{
ios::sync_with_stdio(false);
LL low,high,i,j,k,ans;
cin>>n>>k;
k=n*n-k+1;
for(i=1;i<=n;i++) cin>>a[i]>>b[i];
sort(a+1,a+1+n);
sort(b+1,b+1+n);
ans=0;
low=a[1]*b[1];
high=a[n]*b[n];
while(high-low>1) {
LL mid=(low+high)>>1;
if(count(mid)>=k) {
ans=mid;
high=mid;
}
else low=mid;
}
cout<<ans<<endl;
return 0;
}