本题的大致意思为给定一个数组,求其分成m个不相交子段和最大值的问题。
方程 dp[i][j]=Max(dp[i][j-1]+a[j] , max( dp[i-1][k] ) + a[j] ) 0<k<j
http://www.cnblogs.com/kuangbin/archive/2011/08/04/2127085.html
#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<map>
using namespace std;
#define MAXN 1000000
int dp[100][100];
int a[100];
int main()
{
int n,m,i,j,t;
cin>>m>>n;
for(i=1;i<=n;i++) cin>>a[i];
for(i=1;i<=m;i++) {
t=-99999999;
for(j=i;j<=n;j++){
t=max(t,dp[i-1][j-1]);
dp[i][j]=max(dp[i][j-1]+a[j],t+a[j]);
}
}
cout<<dp[m][n]<<endl;
return 0;
}
用二维会爆炸,转化为滚动数组:
/*
状态dp[i][j]有前j个数,组成i组的和的最大值。决策:
第j个数,是在第包含在第i组里面,还是自己独立成组。
方程 dp[i][j]=Max(dp[i][j-1]+a[j] , max( dp[i-1][k] ) + a[j] ) 0<k<j
空间复杂度,m未知,n<=1000000, 继续滚动数组。
时间复杂度 n^3. n<=1000000. 显然会超时,继续优化。
max( dp[i-1][k] ) 就是上一组 0....j-1 的最大值。
我们可以在每次计算dp[i][j]的时候记录下前j个的最大值
用数组保存下来 下次计算的时候可以用,这样时间复杂度为 n^2.
*/
#include<stdio.h>
#include<algorithm>
#include<iostream>
using namespace std;
#define MAXN 1000000
#define INF 0x7fffffff
int dp[MAXN+10];
int mmax[MAXN+10];
int a[MAXN+10];
int main()
{
int n,m;
int i,j,mmmax;
while(scanf("%d%d",&m,&n)!=EOF)
{
for(i=1;i<=n;i++)
{
scanf("%d",&a[i]);
mmax[i]=0;
dp[i]=0;
}
dp[0]=0;
mmax[0]=0;
for(i=1;i<=m;i++)
{
mmmax=-INF;
for(j=i;j<=n;j++)
{
dp[j]=max(dp[j-1]+a[j],mmax[j-1]+a[j]);
mmax[j-1]=mmmax;
mmmax=max(mmmax,dp[j]);
}
}
printf("%d\n",mmmax);
}
return 0;
}