DAY 36 python 入门教程

函数参考https://docs.python.org/2.7/library/functions.html#abs

参考网站https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000


一、简单入门


中文乱码

# -*- coding: utf-8 -*-

占位符

>>> 'Hello, %s' % 'world'
'Hello, world'
>>> 'Hi, %s, you have $%d.' % ('Michael', 1000000)
'Hi, Michael, you have $1000000.'
通用的占位符 %s

>>> 'Age: %s. Gender: %s' % (25, True)
'Age: 25. Gender: True'


二、数据结构


listtuplePython内置的有序集合,一个可变,一个不可变。根据需要来选择使用它们。


List
>>> classmates = ['Michael', 'Bob', 'Tracy']
>>> classmates.append('Adam')
>>> classmates.insert(1, 'Jack')
>>> classmates.pop()
>>> classmates.pop(1)
tuple
>>> classmates = ('Michael', 'Bob', 'Tracy')
>>> t = (1,)
dict(map)
dict可以用在需要高速查找的很多地方,在Python代码中几乎无处不在,正确使用dict非常重要,需要牢记的第一条就是dict的key必须是 不可变对象
>>> d = {'Michael': 95, 'Bob': 75, 'Tracy': 85}
>>> d['Michael']
>>> d.get('Thomas')
>>> d.pop('Bob')

set(map)
>>> s1 = set([1, 2, 3])
>>> s2 = set([2, 3, 4])
>>> s1 & s2
{2, 3}
>>> s1 | s2
{1, 2, 3, 4}
>>> s.add(4)
>>> s.remove(4)

str是不变对象,而list是可变对象。

>>> a = 'abc'
>>> b = a.replace('a', 'A')
>>> b
'Abc'
>>> a
'abc'

三、条件判断

s = input('birth: ')
birth = int(s)
if birth < 2000:
    print('00前')
else:
    print('00后')

四、循环

sum = 0
for x in range(101):
    sum = sum + x
print(sum)


五、函数

如果你已经把 my_abs() 的函数定义保存为 abstest.py 文件了,那么,可以在该文件的当前目录下启动Python解释器,用 from abstest import my_abs 来导入 my_abs() 函数,注意 abstest 是文件名(不含 .py 扩展名):

如果想定义一个什么事也不做的空函数,可以用 pass 语句:

import math
def move(x, y, step, angle=0):
    nx = x + step * math.cos(angle)
    ny = y - step * math.sin(angle)
    return nx, ny
定义默认参数要牢记一点:默认参数必须指向不变对象!

def add_end(L=[]):
    L.append('END')
    return L

>>> add_end()
['END', 'END']
>>> add_end()
['END', 'END', 'END']
def add_end(L=None):
    if L is None:
        L = []
    L.append('END')
    return L

>>> add_end()
['END']
>>> add_end()
['END']
可变参数

def calc(*numbers):
    sum = 0
    for n in numbers:
        sum = sum + n * n
    return sum
>>> calc(1, 2)
>>> nums = [1, 2, 3]
>>> calc(*nums)
参数组合

在Python中定义函数,可以用必选参数、默认参数、可变参数、关键字参数和命名关键字参数,这5种参数都可以组合使用。但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数、命名关键字参数和关键字参数。

def f1(a, b, c=0, *args, **kw):
    print('a =', a, 'b =', b, 'c =', c, 'args =', args, 'kw =', kw)

def f2(a, b, c=0, *, d, **kw):
    print('a =', a, 'b =', b, 'c =', c, 'd =', d, 'kw =', kw)

>>> f1(1, 2)
a = 1 b = 2 c = 0 args = () kw = {}
>>> f1(1, 2, c=3)
a = 1 b = 2 c = 3 args = () kw = {}
>>> f1(1, 2, 3, 'a', 'b')
a = 1 b = 2 c = 3 args = ('a', 'b') kw = {}
>>> f1(1, 2, 3, 'a', 'b', x=99)
a = 1 b = 2 c = 3 args = ('a', 'b') kw = {'x': 99}
>>> f2(1, 2, d=99, ext=None)
a = 1 b = 2 c = 0 d = 99 kw = {'ext': None}

>>> args = (1, 2, 3, 4)
>>> kw = {'d': 99, 'x': '#'}
>>> f1(*args, **kw)
a = 1 b = 2 c = 3 args = (4,) kw = {'d': 99, 'x': '#'}
>>> args = (1, 2, 3)
>>> kw = {'d': 88, 'x': '#'}
>>> f2(*args, **kw)
a = 1 b = 2 c = 3 d = 88 kw = {'x': '#'}

小结

Python的函数具有非常灵活的参数形态,既可以实现简单的调用,又可以传入非常复杂的参数。

默认参数一定要用不可变对象,如果是可变对象,程序运行时会有逻辑错误!

要注意定义可变参数和关键字参数的语法:

*args是可变参数,args接收的是一个tuple;

**kw是关键字参数,kw接收的是一个dict。

以及调用函数时如何传入可变参数和关键字参数的语法:

可变参数既可以直接传入:func(1, 2, 3),又可以先组装list或tuple,再通过*args传入:func(*(1, 2, 3))

关键字参数既可以直接传入:func(a=1, b=2),又可以先组装dict,再通过**kw传入:func(**{'a': 1, 'b': 2})

使用*args**kw是Python的习惯写法,当然也可以用其他参数名,但最好使用习惯用法。

命名的关键字参数是为了限制调用者可以传入的参数名,同时可以提供默认值。

定义命名的关键字参数在没有可变参数的情况下不要忘了写分隔符*,否则定义的将是位置参数。


六、切片


>>> L = list(range(100))
>>> L[:10:2]
[0, 2, 4, 6, 8]
>>> L[::5]
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]


七、循环


默认情况下,dict迭代的是key。如果要迭代value,可以用 for value in d.values() ,如果要同时迭代key和value,可以用 for k, v in d.items()
>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for key in d:
...     print(key)
...
a
c
b

八、列表生成器

>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]
>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> for k, v in d.items():
...     print(k, '=', v)
...
y = B
x = A
z = C
使用内建的 isinstance 函数可以判断一个变量是不是字符串:

>>> x = 'abc'
>>> y = 123
>>> isinstance(x, str)
True
>>> isinstance(y, str)
False

九、生成器

在Python中,这种一边循环一边计算的机制,称为生成器(Generator)。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x104feab40>
最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用 next() 的时候执行,遇到 yield 语句返回,再次执行时从上次返回的 yield 语句处继续执行。

>>> def odd():
...     print 'step 1'
...     yield 1
...     print 'step 2'
...     yield 3
...     print 'step 3'
...     yield 5
...
>>> o = odd()
>>> o.next()
step 1
1
>>> o.next()
step 2
3
>>> o.next()
step 3
5

十、高阶函数

Python内建了 map() reduce() 函数。

map()
把f(x)作用在list的每一个元素并把结果生成一个新的list:

>>> def f(x):
...     return x * x
...
>>> map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
[1, 4, 9, 16, 25, 36, 49, 64, 81]
reduce()



reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
>>> def add(x, y):
...     return x + y
...
>>> reduce(add, [1, 3, 5, 7, 9])
25
filter()

map()类似,filter()也接收一个函数和一个序列。和map()不同的时,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。


def is_odd(n):
    return n % 2 == 1

filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15])
# 结果: [1, 5, 9, 15]
sorted()

通常规定,对于两个元素 x y ,如果认为 x < y ,则返回 -1 ,如果认为 x == y ,则返回 0 ,如果认为 x > y ,则返回 1

def reversed_cmp(x, y):
    if x > y:
        return -1
    if x < y:
        return 1
    return 0
>>> sorted([36, 5, 12, 9, 21], reversed_cmp)
[36, 21, 12, 9, 5]
lambda

当我们在传入函数时,有些时候,不需要显式地定义函数,直接传入匿名函数更方便。

关键字lambda表示匿名函数,冒号前面的x表示函数参数。

>>> map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9])
[1, 4, 9, 16, 25, 36, 49, 64, 81]

十一、装饰器

比如,在函数调用前后自动打印日志,但又不希望修改 now() 函数的定义,这种在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。

def log(func):
    def wrapper(*args, **kw):
        print 'call %s():' % func.__name__
        return func(*args, **kw)
    return wrapper
@log
def now():
    print '2013-12-25'
>>> now()
call now():
2013-12-25

因为返回的那个wrapper()函数名字就是'wrapper',所以,需要把原始函数的__name__等属性复制到wrapper()函数中,否则,有些依赖函数签名的代码执行就会出错。

不需要编写wrapper.__name__ = func.__name__这样的代码,Python内置的functools.wraps就是干这个事的,所以,一个完整的decorator的写法如下:

import functools

def log(func):
    @functools.wraps(func)
    def wrapper(*args, **kw):
        print 'call %s():' % func.__name__
        return func(*args, **kw)
    return wrapper












评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值