hashmap原理和源码

hashmap原理

hashmap继承体系

回答:Java容器中的两大继承体系有map和list,map接口的主要实现类有HaspMap、LinkedHashMap、HashTable等。

请添加图片描述

node数据结构分析

hashmap中的node类实现Entry接口,其实就相当于存储我们往map中去put和set的值的存储节点的底层数据结构

请添加图片描述

hashmap底层存储结构

底层存储结构是哈希表,也可以说是:数组+链表+红黑树

在这里插入图片描述

put数据原理分析

  1. 获取key的hash值
  2. 扰动函数是hash值更散列
  3. 构造node
  4. 找出在数组的位置进行插入
    请添加图片描述

什么是Hash碰撞

不同的值,如张三和李四经过计算得到的hash值相同,但是张三已经将位置占据了,次时李四也要占据这个位置,因此会产生冲突

什么是链化

hashmap底层结构由于hash碰撞,则在同一位置上的node越来越多,形成链表,则原本查询数据时只需要o(1)的复杂度,链化后就需要o(n)的复杂度

jdk8为什么引入红黑树

为了解决链化的问题

hashmap扩容原理

当hashmap中元素的个数超过了装载因子 * 容量时,hashmap会进行扩容,扩容的原理就是hashmap会使用一个新的数组来代替原有的数组,然后重新计算hashcode值后就将其插入进去

  • hashmap扩容容量为什么保持2的n次幂?计算hashcode值进行位运算时,能够充分的散列,使得添加的元素均匀分布在HashMap的每个位置上,减少hash碰撞
    请添加图片描述

hashmap源码

put方法

put方法调的是putVal方法,我们主要分析这个方法即可
在这里插入图片描述
putval方法具体流程分析如下,读具体注释即可明白

  /**
     * Implements Map.put and related methods.
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to put
     * @param onlyIfAbsent if true, don't change existing value
     * @param evict if false, the table is in creation mode.
     * @return previous value, or null if none
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        //tab:引用当前hashMap的散列表
        //p:表示当前散列表的元素
        //n:表示散列表数组的长度
        //i:表示路由寻址 结果
        Node<K,V>[] tab; Node<K,V> p; int n, i;

        //延迟初始化逻辑,第一次调用putVal时会初始化hashMap对象中的最耗费内存的散列表
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;

        //最简单的一种情况:寻址找到的桶位 刚好是 null,这个时候,直接将当前k-v=>node 扔进去就可以了
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);

        else {
            //e:不为null的话,找到了一个与当前要插入的key-value一致的key的元素
            //k:表示临时的一个key
            Node<K,V> e; K k;

            //表示桶位中的该元素,与你当前插入的元素的key完全一致,表示后续需要进行替换操作
            if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;

            else if (p instanceof TreeNode)//红黑树,下期讲。进QQ群:865-373-238
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                //链表的情况,而且链表的头元素与我们要插入的key不一致。
                for (int binCount = 0; ; ++binCount) {
                    //条件成立的话,说明迭代到最后一个元素了,也没找到一个与你要插入的key一致的node
                    //说明需要加入到当前链表的末尾
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        //条件成立的话,说明当前链表的长度,达到树化标准了,需要进行树化
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            //树化操作
                            treeifyBin(tab, hash);
                        break;
                    }
                    //条件成立的话,说明找到了相同key的node元素,需要进行替换操作
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }

            //e不等于null,条件成立说明,找到了一个与你插入元素key完全一致的数据,需要进行替换
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }

        //modCount:表示散列表结构被修改的次数,替换Node元素的value不计数
        ++modCount;
        //插入新元素,size自增,如果自增后的值大于扩容阈值,则触发扩容。
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

resize扩容方法

 /**
     * Initializes or doubles table size.  If null, allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise, because we are using power-of-two expansion, the
     * elements from each bin must either stay at same index, or move
     * with a power of two offset in the new table.
     *
     * 为什么需要扩容?
     * 为了解决哈希冲突导致的链化影响查询效率的问题,扩容会缓解该问题。
     *
     * @return the table
     */
    final Node<K,V>[] resize() {
        //oldTab:引用扩容前的哈希表
        Node<K,V>[] oldTab = table;
        //oldCap:表示扩容之前table数组的长度
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        //oldThr:表示扩容之前的扩容阈值,触发本次扩容的阈值
        int oldThr = threshold;
        //newCap:扩容之后table数组的大小
        //newThr:扩容之后,下次再次触发扩容的条件
        int newCap, newThr = 0;

        //条件如果成立说明 hashMap中的散列表已经初始化过了,这是一次正常扩容
        if (oldCap > 0) {
            //扩容之前的table数组大小已经达到 最大阈值后,则不扩容,且设置扩容条件为 int 最大值。
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }

            //oldCap左移一位实现数值翻倍,并且赋值给newCap, newCap 小于数组最大值限制 且 扩容之前的阈值 >= 16
            //这种情况下,则 下一次扩容的阈值 等于当前阈值翻倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                    oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }

        //oldCap == 0,说明hashMap中的散列表是null
        //1.new HashMap(initCap, loadFactor);
        //2.new HashMap(initCap);
        //3.new HashMap(map); 并且这个map有数据
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;

        //oldCap == 0,oldThr == 0
        //new HashMap();
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;//16
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);//12
        }

        //newThr为零时,通过newCap和loadFactor计算出一个newThr
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                    (int)ft : Integer.MAX_VALUE);
        }

        threshold = newThr;

        //创建出一个更长 更大的数组
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;

        //说明,hashMap本次扩容之前,table不为null
        if (oldTab != null) {

            for (int j = 0; j < oldCap; ++j) {
                //当前node节点
                Node<K,V> e;
                //说明当前桶位中有数据,但是数据具体是 单个数据,还是链表 还是 红黑树 并不知道
                if ((e = oldTab[j]) != null) {
                    //方便JVM GC时回收内存
                    oldTab[j] = null;

                    //第一种情况:当前桶位只有一个元素,从未发生过碰撞,这情况 直接计算出当前元素应存放在 新数组中的位置,然后
                    //扔进去就可以了
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;

                    //第二种情况:当前节点已经树化,本期先不讲,下一期讲,红黑树。QQ群:865-373-238
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        //第三种情况:桶位已经形成链表

                        //低位链表:存放在扩容之后的数组的下标位置,与当前数组的下标位置一致。
                        Node<K,V> loHead = null, loTail = null;
                        //高位链表:存放在扩容之后的数组的下表位置为 当前数组下标位置 + 扩容之前数组的长度
                        Node<K,V> hiHead = null, hiTail = null;

                        Node<K,V> next;
                        do {
                            next = e.next;
                            //hash-> .... 1 1111
                            //hash-> .... 0 1111
                            // 0b 10000

                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }

                        } while ((e = next) != null);


                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }

                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }

                    }
                }
            }
        }
        return newTab;
    }

get方法

get方法底层去调用getNode方法

 /**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
     * key.equals(k))}, then this method returns {@code v}; otherwise
     * it returns {@code null}.  (There can be at most one such mapping.)
     *
     * <p>A return value of {@code null} does not <i>necessarily</i>
     * indicate that the map contains no mapping for the key; it's also
     * possible that the map explicitly maps the key to {@code null}.
     * The {@link #containsKey containsKey} operation may be used to
     * distinguish these two cases.
     *
     * @see #put(Object, Object)
     */
    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

getNode方法

 /**
     * Implements Map.get and related methods.
     *
     * @param hash hash for key
     * @param key the key
     * @return the node, or null if none
     */
    final Node<K,V> getNode(int hash, Object key) {
        //tab:引用当前hashMap的散列表
        //first:桶位中的头元素
        //e:临时node元素
        //n:table数组长度
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;

        if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {
            //第一种情况:定位出来的桶位元素 即为咱们要get的数据
            if (first.hash == hash && // always check first node
                    ((k = first.key) == key || (key != null && key.equals(k))))
                return first;

            //说明当前桶位不止一个元素,可能 是链表 也可能是 红黑树
            if ((e = first.next) != null) {
                //第二种情况:桶位升级成了 红黑树
                if (first instanceof TreeNode)//下一期说
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                //第三种情况:桶位形成链表
                do {
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;

                } while ((e = e.next) != null);
            }
        }
        return null;
    }

remove方法

  /**
     * Removes the mapping for the specified key from this map if present.
     *
     * @param  key key whose mapping is to be removed from the map
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     *         (A <tt>null</tt> return can also indicate that the map
     *         previously associated <tt>null</tt> with <tt>key</tt>.)
     */
    public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
                null : e.value;
    }

    /**
     * Implements Map.remove and related methods.
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to match if matchValue, else ignored
     * @param matchValue if true only remove if value is equal
     * @param movable if false do not move other nodes while removing
     * @return the node, or null if none
     */
    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        //tab:引用当前hashMap中的散列表
        //p:当前node元素
        //n:表示散列表数组长度
        //index:表示寻址结果
        Node<K,V>[] tab; Node<K,V> p; int n, index;

        if ((tab = table) != null && (n = tab.length) > 0 &&
                (p = tab[index = (n - 1) & hash]) != null) {
            //说明路由的桶位是有数据的,需要进行查找操作,并且删除

            //node:查找到的结果
            //e:当前Node的下一个元素
            Node<K,V> node = null, e; K k; V v;

            //第一种情况:当前桶位中的元素 即为 你要删除的元素
            if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;


            else if ((e = p.next) != null) {
                //说明,当前桶位 要么是 链表 要么 是红黑树

                if (p instanceof TreeNode)//判断当前桶位是否升级为 红黑树了
                    //第二种情况
                    //红黑树查找操作,下一期再说
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    //第三种情况
                    //链表的情况
                    do {
                        if (e.hash == hash &&
                                ((k = e.key) == key ||
                                        (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }


            //判断node不为空的话,说明按照key查找到需要删除的数据了
            if (node != null && (!matchValue || (v = node.value) == value ||
                    (value != null && value.equals(v)))) {

                //第一种情况:node是树节点,说明需要进行树节点移除操作
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);

                //第二种情况:桶位元素即为查找结果,则将该元素的下一个元素放至桶位中
                else if (node == p)
                    tab[index] = node.next;

                else
                    //第三种情况:将当前元素p的下一个元素 设置成 要删除元素的 下一个元素。
                    p.next = node.next;

                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值