poj1991解题报告

题目大意:Bessie要交作业,初始零时刻Bsisine位于坐标坐标原点上,现在给出教室的坐标(全在x轴上),以及每个教室最早的能交作业的时间,还有公交站的坐标,问Bessie交完作业并且到达公交站的最短时间。

解题思路:贪心+区间D

(以下摘自http://www.cnblogs.com/Thispoet/archive/2011/08/31/2160227.html)


贪心:当有一段连续区间[i,j]未交时,取i或j是最优的。

贪心思想证明:如果在[i,j]这段连续区间都没有被取的时候取了中间的m,那么后来一定要从m返回到i或者j,这时候是一定走了“冤枉路的”。而如果这时取了i或者j,那么到中间的时候m一定可以取。证毕。

区间DP:

dp[i][j][0]表示为i-j区间尚未完成交作业的最少时间,其中0代表只交了i作业,dp[i][j][1]同理就是只交了j作业,那么我们将很容易想出来,这是由大区间逐渐推出小区间的一个过程,最终的dp[i][i][0]和dp[i][i][1]就代表停留在i位置的最少时间,最后再加上i-B的距离就是到达公交车站的时间

状态转移方程有四个

 dp[i][j][0]=min(dp[i][j][0],dp[i-1][j][0]+c[i].x-c[i-1].x);

 dp[i][j][0]=min(dp[i][j][0],dp[i][j+1][1]+c[j+1].x-c[i].x);

  dp[i][j][1]=min(dp[i]j][1],dp[i-1][j][0]+c[j].x-c[i-1].x);

 dp[i][j][1]=min(dp[i][j][1],dp[i][j+1][1]+c[j+1].x-c[j].x);

每次还有和时间比较下,有可能走到那个点了,却还不够最早交作业的时间。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
using namespace std;
const int maxn=1005;
const int INF=(1<<30);

struct node
{
        int x;
        int t;
}c[maxn];

int cmp(node a,node b)
{
        if(a.x==b.x)  return a.t<b.t;
        return a.x<b.x;
}

int n,H,B,dp[maxn][maxn][2];
int main()
{
        while(scanf("%d%d%d",&n,&H,&B)!=EOF)
        {
                 for(int i=1;i<=n;i++)
                        scanf("%d%d",&c[i].x,&c[i].t);
                sort(c+1,c+n+1,cmp);
                dp[1][n][0]=max(c[1].t,c[1].x);
                dp[1][n][1]=max(c[n].t,c[n].x);
                for(int d=n-2;d>=0;d--)
                        for(int i=1;i+d<=n;i++)
                        {
                                int L=i;
                                int R=i+d;
                                dp[L][R][0]=INF;
                                if(L-1>0)
                                dp[L][R][0]=min(dp[L][R][0],dp[L-1][R][0]+c[L].x-c[L-1].x);
                                if(R+1<=n)
                                dp[L][R][0]=min(dp[L][R][0],dp[L][R+1][1]+c[R+1].x-c[L].x);
                                if(dp[L][R][0]<c[L].t) dp[L][R][0]=c[L].t;
                                dp[L][R][1]=INF;
                                if(L-1>0)
                                dp[L][R][1]=min(dp[L][R][1],dp[L-1][R][0]+c[R].x-c[L-1].x);
                                if(R+1<=n)
                                dp[L][R][1]=min(dp[L][R][1],dp[L][R+1][1]+c[R+1].x-c[R].x);
                                if(dp[L][R][1]<c[R].t)  dp[L][R][1]=c[R].t;
                        }
        int ans=INF;
        for(int i=1; i<=n; i++)
        {
                ans=min(min(dp[i][i][0]+abs(c[i].x-B),dp[i][i][1]+abs(c[i].x-B)),ans);
        }
    printf("%d\n",ans);
        }
        return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值