如果开发想要基于某个大模型开发一个应用该怎么做?
一般有以下几种方式:
1、自己部署大模型
部署大模型,分为两种模式,一种是部署自研大模型,还有一种是部署开源大模型。
部署自研大模型的优势是,可以完全根据自己的业务需求和目标设计和开发模型,实现最大程度的定制化,满足独特的应用场景和用户需求。
如果成功研发出具有创新性和高性能的大模型,可以在市场上获得独特的竞争优势,为企业带来差异化的价值,比如openAI这家公司。
但缺点是研发成本太高,技术难度太高,一般是大公司才会做的选择。
我们再来看下部署开源大模型。开源模型一般是免费使用的,或者只需要较低的成本进行部署和维护,相比于自研大模型,这种方式成本更低些。
当然也可以根据自己的需求对模型进行定制和优化,包括修改模型结构、调整参数、训练模型等,以更好地满足特定应用场景的需求,
但是如果需要微调开源大模型的话,在训练模型这块,也是需要计算资源的。
总的来说,自己部署大模型对技术要求比较高,需要具备一定的深度学习和机器学习知识,还有相关的技术能力来安装、配置和优化模型。
所以有能力自研大模型的公司就对外提供了大模型API,让普通公司直接去调用大模型,极大提高了效率和降低了成本,我们继续往下看。
2、调用大模型API和结合langchain
为了盈利,很多生产大模型的公司会对外提供调用大模型的API,比如openAI有提供gpt-4的API调用,字节豆包也有提供豆包大模型的api调用,可按量计费或者包年包月计费。
平台提供的API大模型接口,请求参数一般是用户询问的问题和上下文,返回参数是大模型的回答内容。
仅使用大模型API,可以轻松实现一个简单应用,比如简单版聊天机器人,只需向 API 发送用户输入的文本,接收 API 返回的生成内容,并展示给用户,就能完成基本的交互功能。
比较简单的应用,是可以通过直接调用大模型API实现,但是对于复杂的应用,仅通过调用API是无法实现的。
比如,在多轮对话场景中,需要记录对话历史、根据特定条件引导对话流程等,仅使用 API 可能会使开发变得复杂。
所以对于复杂场景,可以结合langchain框架一起来开发。
什么是langchain呢?langchain是一个链式调用粘合剂。它是一个开源框架,它就像是一个调度中心,可以把各个组件和LLM大模型连接起来。
举个例子,比如我们要搭建一个chatGPT,需要实现与用户多轮会话的功能。
首先我们需要一个记录会话过程的存储组件, 其次我们还需要一个调用会话过程并把对话信息作为LLM上下文的连接组件。
这些组件,langchain都已经帮我们封装好了,只需要写少量代码来调用就可以。
要完成以上步骤,还是有些复杂的,所以为了更快速的搭建,搭建工作流的方式就应运而生了。
继续往下看。
3、搭建工作流
在讲工作流之前,我们先讲下Agent。什么是Agent呢,Agent的中文名是智能体,它是基于LLM大模型而搭建出的智能应用,比如宝宝长相预测助手、智能客服助手。
Agent和LLM大模型有什么不同?LLM大模型是Agent的组成部分,LLM 大模型为智能体提供强大的语言理解和生成能力。
为了快速搭建出一个智能应用,很多大公司推出了AI应用开发平台,比如字节的扣子平台,腾讯混元平台。
无论你是否有编程基础,都可以在这些平台上快速搭建基于大模型的各类 Agent,并将 Agent 发布到各个社交平台、通讯软件或部署到网站等其他渠道。
而快速搭建出一个Agent,是通过自定义搭建工作流的方式实现的。
下面以扣子平台为例来讲解。
对于比较简单的Agent,可以直接通过自然语言描述来直接生成,比如我想生成一个小红书创意写作助手,只需要提供角色、技能、限制条件就可以了。
但是对于稍微复杂点的Agent,还需要通过搭建工作流的方式来实现。
首先扣子平台封装了很多组件,比如豆包大模型组件、GPT大模型组件、处理输入文本组件、生成图像组件等等。
我们只需要定义好每个组件的输入和输出,像搭积木一样把它们拼起来,就可以生成一个Agent了,生成的Agent还可以发布到豆包应用商店、微信小程序直接使用,也可以把它发布为API,在我们的项目里面去调用。
可以说,通过搭建工作流的方式,是目前最高效的生产AI应用的方式。如果想要直接调用现成的大模型来快速搭建应用,这是挺不错的一种方式。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓
