offer捷报
训练营学员继拿下腾讯美团字节sp后,百度经过加面,也给了sp offer,且签字费给到了其他大厂的两倍。
今天我们来看一道美团的大模型面试真题:LLaMA 是怎么优化注意力机制计算的?
这张图来自牛客,是某位面完美团的牛友写的面经,可以看到,针对这道题目,这位同学还专门标注了:“我真的不知道”_
我们还是老规矩,从面试官的视角出发,来分析一下这道题目。看一下到底应该如何作答,才能让面试官眼前一亮,从众多候选人中脱颖而出。
01
面试官心理分析
首先还是来分析一下面试官的心理,面试官问这个问题,其实主要是想考察两点:
第一,你了不了解 llama 这个架构。
llama 作为业界开源大模型的主力军,如果你对这个网络的结构都不了解,那这道题肯定是 0 分了。
第二,面试官希望知道,你对 llama 这个体系架构的升级迭代是不是足够清楚。
llama 经过 23 年 2 月开始,一年多时间的发展,已经升级到了 llama3.2,而且很快要发布 llama4。
这里面的变化过程如果你不了解,比如注意力机制如何做的升级。也侧面证明了你对业界大模型的研究热点 follow 的不够紧密,作为算法工程师而言,这也是不合格的。
所以我们应该怎么回答这道题目呢?接下来就一起来分析一下。
02
面试题解析
第一步,首先是定调,先直接了当的说出改进是什么?
其实主要就是体现在注意力机制方面,llama2 相比于 llama1,把多头注意力机制(MHA)改进为了分组查询注意力机制(GQA),llama3 系列在 8B 和 70B 的模型上继续沿用了 GQA 这个改进。
定好基调之后,我们再给面试官讲,这样改进的动机是什么?
从图中可以看到,llama 系列最明显的一个升级,就是上下文长度,从 llama1 的 2k, 到 llama2 的 4k,最后升级到 llama3 的 8k。
增加上下文长度不仅提升了 LLaMA 的性能,而且拓宽了它的应用场景,这是一个非常直观的改进。
然而上下文长度增加,传统的多头注意力中的 KV 缓存无疑是巨大的,因此 llama 的注意力机制的改进就是:尽量减少 KV cache 对显存的占用,同时保持性能不受大的影响。
GQA 的思路简单粗暴:用原始多头注意力机制,每个 K 和 V 有多个注意力头,你嫌占内存;用 Multi-Query Attention,每个 K 和 V 只有一个注意力头,你嫌性能有损失。
那怎么办呢?
索性就把 Q 的 h 个注意力头分成几组,每个组对应一个 K 和 V,这样既不会占用太多内存,也不会损失太多性能。
从图中也可以看出,GQA 的机制是 Q 的若干个注意力头组成一组,共享同一个 K 和 V,llama2 设置的分组的实际 size 是 8。
好,回答到这里,其实已经是一个不错的面试回答了,不过我们还可以做适当延伸,向面试官体现出我们的知识体系性。
其实这也是面试中的一个技巧,就是不要只是问什么答什么,适当扩展,体现你的知识系统性。
当然这里也要提醒大家,适当延伸即可,切忌长篇大论。
所以这里我们还可以继续告诉面试官:llama 系列除了在注意力机制上的改进以外,词汇表的 size 也大幅提高,从最初的 32K 到现在的 128K。(词汇表 size)
然后预训练语料也扩大了 10 倍,第一代只有 1.4 万亿,到 Llama3 的训练数据已经达到了 15 万亿。(预训练语料)
此外还有训练成本的增加,Llama3-8B 模型的训练时长,甚至比 Llama1-65B 还长。(训练成本)
然后还有一些局部的改进,如位置编码采用旋转位置编码(ROPE),激活函数从 SwiGLU 升级为 SiLu,RMSNorm 做归一化,以及训练细节的优化等等,使得最新的 llama3 系列模型在 benchmark 榜单取得了优秀的成绩。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈