LeetCode -Java 5. 最长回文子串

给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。

示例 1:

输入: "babad"
输出: "bab"
注意: "aba" 也是一个有效答案。

示例 2:

输入: "cbbd"
输出: "bb"

分析:

       暴力解法:

       选出所有子字符串可能的开始和结束位置,并检验它是不是回文。复杂度O(n*n*n)

       中心扩展算法:

       我们观察到回文中心的两侧互为镜像。因此,回文可以从它的中心展开,并且只有 2n - 12n−1 个这样的中心。你可能会问,为什么会是 2n - 1 个,而不是 n 个中心?原因在于所含字母数为偶数的回文的中心可以处于两字母之间(例如 {“abba”} 的中心在两个 ‘b’ 之间)。时间复杂度O(n*n)

       动态规划:

       暴力解法计算了很多重复的子问题:例如 “asdfdsa”,暴力解法在计算完 “asdfdsa”是回文串后还会继续计算“sdfds”等子串。我们不妨先记忆化假设dp[i][j]为从S字符串从i到j是否为回文子串。接下来我们可以推导出状态转换方程:

      dp[i][j] = dp[i+1][j-1]   -- s[i]==s[j]

      dp[i][j] = 0                  --s[i]!=s[j]

可以写出代码:

import java.util.Scanner;

/**
 * @author: Mr.Hu
 * @create: 2019-03-01 21:10
 */
public class Main{
    public static void main(String[] args) {
        Scanner sc =new Scanner(System.in);
        while (sc.hasNext()){
            System.out.println( longestPalindrome(sc.next()));
        }
    }
    public static String longestPalindrome(String s) {
        if (s.length()==0) return "" ;   //题目中含有空字符串的可能
        int dp[][]=new int[s.length()][s.length()];
        int length=1,start=0;
        for (int i = 0; i < s.length(); i++) {
            dp[i][i]=1;
            if (i<s.length()-1 && s.charAt(i)==s.charAt(i+1)) {     //别忘了更新start和length
                dp[i][i+1]=1;
                start=i;
                length=2;
            }
        }
        for (int l = 3; l <= s.length(); l++) {
            for (int i = 0; i+l-1  < s.length(); i++) {
                int j=i+l-1;
                if (s.charAt(i)==s.charAt(j)&&dp[i+1][j-1]==1) {  //因为i+1 和j-1 所以长度得从3开始。
                    dp[i][j]=1;
                    length=l;
                    start=i;
                }
                else dp[i][j]=0;
            }
        }
        return s.substring(start,start+length);
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值