机器学习
码灵
爱码。
平时学习新的知识,看到了新的东西,记录下来。
展开
-
机器学习-无监督学习-K-means算法-小白笔记
1 无监督学习-K-means算法1.1 什么是无监督学习?1.2 无监督学习包含算法1.3 K-means原理1.4 K-meansAPI原创 2020-08-24 23:53:45 · 209 阅读 · 0 评论 -
机器学习-sklearn模型的保存和加载API-小白笔记
1 模型保存与加载2 sklearn 模型的保存和加载API 导入即可使用,非常简单。原创 2020-08-24 23:23:25 · 357 阅读 · 0 评论 -
机器学习-ROC曲线与AUC指标-小白笔记
1 ROC曲线与AUC指标1.1 知道TPR和FPR1.2 ROC曲线1.3 AUC指标1.4 AUC计算API1.5 AUC API实现结合逻辑回归案例查看原创 2020-08-24 00:18:10 · 388 阅读 · 0 评论 -
机器学习-分类的评估方法-小白笔记
1 分类的评估方法1.1 精确率与召回率1.1.1 混淆矩阵1.1.2 精确率(Precision)与召回率(Recall)1.2 分类评估报告API后续来讲ROC曲线和AUC指标1.3 API实现原创 2020-08-23 23:51:11 · 312 阅读 · 0 评论 -
机器学习-逻辑回归简介-小白笔记
1 逻辑回归逻辑回归(Logistics Regression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归,但是它与回归之间有一定的区别。由于算法的简单和高效,在实际中应用非常广泛。1.1 逻辑回归的应用场景1.2 逻辑回归的原理1.2.1 输入1.2.2 激活函数1.3 损失以及优化1.3.1 损失逻辑回归的损失,称之为对数似然损失,公式如下:1.3.2 优化1.4 逻辑回归API1..原创 2020-08-23 23:10:54 · 328 阅读 · 0 评论 -
机器学习-岭回归-小白笔记
1 岭回归1.1 定义岭回归,其实也是一种线性回归。只不过在算法建立回归方程的时候,加上正则化的限制,从而达到解决过拟合的效果。1.2 实现API1.3 观察正则化程度的变化,对结果的影响?1.4 波士顿房价预估案例实现from sklearn.model_selection import train_test_splitfrom sklearn.datasets import load_bostonfrom sklearn.preprocessing imp原创 2020-08-23 14:34:24 · 405 阅读 · 0 评论 -
机器学习-过拟合与欠拟合-小白笔记
1 过拟合与欠拟合1.1 什么是过拟合与欠拟合定义1.2 原因以及解决方法1.2.1 正则化类别原创 2020-08-16 22:59:17 · 187 阅读 · 0 评论 -
机器学习-线性回归-小白笔记
1 线性回归1.1 线性回归的原理1.1.1 线性回归应用场景1.1.2 什么是线性回归1 定义与公式2 线性回归的特征与目标的关系分析 小结1.2 线性回归的损失和优化原理1.2.1 损失函数1.2.2 优化算法所以有了梯度下降这样一个优化算法,回归就有了“自动学习”的能力。1.3 线性回归API...原创 2020-08-16 17:53:46 · 904 阅读 · 0 评论 -
机器学习-集成学习之随机森林-小白笔记
1 随机森林1.1 什么是集成学习方法1.2 什么是随机森林1.3 随机森林原理过程为什么采用BootStrap抽样1.4 实现API1.5 总结原创 2020-08-16 15:21:38 · 213 阅读 · 0 评论 -
机器学习-决策树算法-小白笔记
1 决策树1.1 认识决策树1.2 决策树分类原理详解1.2.1 原理1.2.2 信息熵的定义1.2.3 信息增益1.3 决策树API1.4 决策树可视化1.4.1 保存树的结构到dot文件1.4.2 网站显示结构http://webgraphviz.com/1.5 鸢尾花案例代码实现from sklearn.model_selection import train_test_splitfrom原创 2020-08-08 12:51:23 · 430 阅读 · 0 评论 -
机器学习-朴素贝叶斯算法-小白笔记
1 朴素贝叶斯算法1.1 应用案例1.2 概率基础1.2.1 概率的定义原创 2020-08-05 22:39:22 · 335 阅读 · 0 评论 -
机器学习-模型选择与调优-小白笔记
1 机器学习-模型选择与调优1.1 什么是交叉验证原创 2020-08-03 22:51:34 · 320 阅读 · 0 评论 -
机器学习-K-近邻算法-小白笔记
1 什么是K-近邻算法1.1 K-近邻算法(KNN)原理1.2 电影类型分析1.3 K-近邻算法API1.4 案例1:鸢尾花种类预测1.4.1 数据集介绍1.4.2 代码实现from sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing import StandardScal原创 2020-08-02 18:54:26 · 279 阅读 · 0 评论 -
机器学习-特征降维-小白笔记
1 特征降维1.1 降维1.2 降维的两种方式1.3 什么是特征选择1.3.1 特征选择1.3.2 实现方法 1.3.3 过滤式定义实现API原创 2020-08-02 13:05:10 · 558 阅读 · 0 评论 -
机器学习-特征预处理-小白笔记
1 什么是特征预处理通过一些转换函数将特征数据转换成更加适合算法模型的特征数据过程。1.1 包含内容数据类型的无量纲化: 归一化 、标准化。1.2 特征预处理APIsklearn.preprocessing1.3 归一化1.3.1 定义通过对原始数据进行变换把数据映射到0与1之间(默认0与1)。1.3.2 公式1.3.3 实现API代码实现from sklearn.preprocessing import MinMaxSc...原创 2020-08-02 01:59:55 · 536 阅读 · 0 评论 -
机器学习-特征抽取-小白笔记
1 特征工程介绍1.1 为什么需要特征工程(Feature Engineering)1.2 什么是特征工程1.3 特征工程的位置与数据处理的比较1.4 什么是特征抽取将任意数据(如文本、图像等)转变为可用于机器学习的数字特征。文本提取成数字特征提取APIsklearn.feature_extraction1.5 字典特征提取代码from sklearn.feature_extraction import DictVectori...原创 2020-08-02 00:29:22 · 471 阅读 · 0 评论 -
机器学习-数据集-小白笔记
1 数据集学习目标:知道数据集分为训练集和测试集 会使用sklearn1.1 可用数据集1.2 scikitLean工具简介安装命令scikit-learn 是一个强大的机器学习库。它的安装依赖于:Scikit-learn requires:Python (>= 2.6 or >= 3.3),NumPy (>= 1.6.1),SciPy (>= 0.9).pip install --upgra...原创 2020-08-01 18:13:20 · 439 阅读 · 0 评论 -
机器学习-概述-小白笔记
1 人工智能概述1.1 机器学习与人工智能、深度学习1.2 机器学习、深度学习能做些什么当前重要的是掌握一些机器学习算法等技巧,从某个业务领域切入解决问题。1.3 人工智能学习阶段2 什么是机器学习2.1 定义机器学习是从数据中自动分析获得模型,并利用模型对未知数据进行预测。2.2 解释2.3 数据集构成3 机器学习算法分类分析2.2中例子3.1 总结3.2 练习答案 1 回归2分类3心理..原创 2020-08-01 14:51:51 · 210 阅读 · 0 评论