设角度为a,水平分速度Vx = v * cosa,竖直分速度为Vy = v * sina,大家都知道水平速度是不变的,所以球的飞行时间就是t = l / Vx.
时间确定后,只要算出竖直方向之速度在经历时间t后达到的高度即可(因为你必须首先得到篮筐),这样加上起始高度就是最大高度.
因为距离公式是S = Vy*t- (1/2)*g*t*t。所以这题最后高度H = h + Vy*t- (1/2)*g*t*t。把t = l / v*cosa代入公式。
得:H = h + tana*l- g*l*l/(2*v*v*cosa*cosa)
又因为1 / (cosa * cosa )== 1 + tana * tana
得:H = h + tana*l -( g*l*l / (2*v*v)) *(1+tana * tana)
下面就是对tana*l +( g*l*l / (2*v*v)) *(1+tana * tana)这个一元二次方程求最大值了
得:有最高高度是 tana = v*v /(g*l),代入得解。
#include<stdio.h>
#include<math.h>
#define g 9.8
#define eps 1e-10
int dcmp(double x)
{
if(fabs(x)<eps)//x==0
return 0;
else
return x<0?-1:1;
}
int main()
{
double h,l,v;
while(scanf("%lf%lf%lf",&h,&l,&v))
{
if(dcmp(h)==0&&dcmp(l)==0&&dcmp(v)==0)
break;
double ans;
ans=v*v/g/2-(g*l*l)/(2*v*v)+h;
printf("%.2lf\n",ans);
}
}