HDU 4666 STL求多维最远曼哈顿距离

题意: 有Q个操作。 没次操作会增加一个点, 或者删除一个点。 每次输出点集的最大曼哈顿距离。
思路: STL应用
一维就是  Max (x) - Min(x)
就是对于 二维的 x - y   和 x + y 做两个集合。 答案肯定会在  Max( x - y) -  Min( x - y)  或者 是  Max(x + y)  -  Min(x + y)
而三维就是 Max(x + y + z) - Min(x + y + z)  或者是 Max(x + y - z)  - Min(x + y - z) 略。
就是  +-a +- b +- c +- d +- e
把每种情况用二进制表示成一个状态枚举一下就可以了。
#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#include<set>
using namespace std;
map<int,int>h[35];
map<int,int>::iterator it;
multiset<int>myset[35];
multiset<int>::iterator it2,i1,i2;
const int oo=-1e9;
int ab(int a)
{
    return a<0?-a:a;
}
int main()
{
    int n,k,s,co[8],num,xu;
    while(~scanf("%d%d",&n,&k))
    {
        int od=1<<k;
        for(int i=0; i<od; i++)
            h[i].clear(),myset[i].clear();
        num=1;
        for(int num=1; num<=n; num++)
        {
            scanf("%d",&s);
            if(!s)
            {
                for(int i=0; i<k; i++)scanf("%d",&co[i]);
                for(int i=0; i<od; i++)
                {
                    int ans=0,sym=i;
                    for(int j=0; j<k; j++)
                    {
                        if(sym&1) ans+=co[j];
                        else ans-=co[j];
                        sym>>=1;
                    }
                    h[i][num]=ans;
                    myset[i].insert(ans);
                }
            }
            else
            {
                scanf("%d",&xu);
                for(int i=0; i<od; i++)
                {
                    it=h[i].find(xu);
                    it2=myset[i].find(it->second);
                    myset[i].erase(it2);
                    h[i].erase(it);
                }
            }
            if(h[0].size()==0)
            {
                puts("0");
                continue;
            }
            int ret=oo;
            for(int i=0; i<od; i++)
            {
                i1=myset[i].begin(),i2=myset[i].end();
                i2--;
                ret=max(ret,ab(*i1-*i2));
            }
            printf("%d\n",ret);
        }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值