1 STL 的数值算法概述
STL 的数值算法提供了一系列用于处理数值计算的模板函数。这些算法主要针对容器中的元素进行数学运算和统计计算,使得程序员能够高效地处理数值数据。
STL 数值算法包括了一系列功能丰富的函数,例如 std::accumulate 用于计算容器中元素的累积值,可以方便地进行求和、求积或其他自定义的累积操作。std::inner_product 用于计算两个序列的点积(内积),这在向量运算中尤为常见。std::partial_sum 则用于计算容器中元素的部分和序列,有助于分析序列的局部特性。
此外,std::adjacent_difference 可以计算容器中每对相邻元素的差,这在分析序列的变化趋势时非常有用。而 std::iota 则可以将一系列连续的值填充到容器中,用于生成序列或初始化容器。
这些数值算法的设计目标是提供一种高效、可靠且易用的工具,以支持各种常见的数值计算任务。它们可以与 STL 中的容器(如 vector、list 等)紧密结合,通过迭代器方便地访问容器中的元素。同时,STL 数值算法的底层实现经过优化,确保了高效的运行性能。
2 std::accumulate
std::accumulate 用于计算给定范围内元素的累积值。这个算法特别适用于数值计算,但也可以通过提供自定义的二元操作来执行更复杂的累积任务。
2.1 基本用法
std::accumulate 的基本用法是计算一个序列中所有元素的和。它接受三个参数:范围的起始迭代器、范围的结束迭代器和一个初始值。
基本语法如下:
template<class InputIt, class T>
T accumulate(InputIt first, InputIt last, T init);
- first 和 last 是定义输入序列范围的迭代器。
- init 是累积运算的初始值。
- 默认的操作是加法,所以如果没有提供自定义操作,std::accumulate 会将序列中的所有元素加起来,并返回总和。
如下为使用示例:
#include <numeric>
#include <vector>
#include <iostream>
int main() {
std::vector<int> numbers = { 1, 2, 3, 4, 5 };
int sum = std::accumulate(numbers.begin(), numbers.end(), 0);
std::cout << "Sum of the numbers: " << sum << std::endl;
return 0;
}
上面代码的输出为
Sum of the numbers: 15
在这个例子中,std::accumulate 计算了向量 numbers 中所有元素的总和。
2.2 自定义操作
除了默认的加法操作,std::accumulate 还允许你提供一个自定义的二元操作。这个操作应该接受两个参数,并返回它们的某种累积结果。这使得 std::accumulate 可以用于执行更复杂的任务,比如计算乘积、最大值、最小值等。
带有自定义操作的 std::accumulate 的语法如下:
template<class InputIt, class T, class BinaryOperation>
T accumulate(InputIt first, InputIt last, T init, BinaryOperation op);
- op 是一个二元操作函数或函数对象,它定义了如何进行累积。
如下为计算乘积的使用示例:
#include <numeric>
#include <vector>
#include <iostream>
#include <functional>
int main() {
std::vector<int> numbers = { 1, 2, 3, 4, 5 };
int product = std::accumulate(numbers.begin(), numbers.end(), 1, std::multiplies<int>());
std::cout << "Product of the numbers: " << product << std::endl;
return 0;
}
上面代码的输出为
Product of the numbers: 120
2.3 自定义数据结构
std::accumulate 不仅可以用于基本数据类型的序列,也可以用于自定义数据结构的序列。通过提供自定义的二元操作,std::accumulate 可以对自定义数据结构的对象执行复杂的累积操作。
自定义数据结构
首先,假设有一个自定义的数据结构,比如一个表示点的类 Point,它包含 x 和 y 两个坐标:
class Point {
public:
int x, y;
Point(int x = 0, int y = 0) : x(x), y(y) {}
// 可以添加其他成员函数,比如用于输出、比较等
};
自定义二元操作
对于上面的自定义数据结构,std::accumulate 无法直接使用默认的加法操作进行累积。因此,需要提供一个自定义的二元操作,告诉 std::accumulate 如何合并两个 Point 对象。
假设想要计算一系列点的 x 坐标的总和和 y 坐标的总和,可以定义一个二元操作函数或函数对象来实现这一点:
struct PointAccumulator {
Point operator()(const Point& a, const Point& b) const {
return Point(a.x + b.x, a.y + b.y);
}
};
这里,PointAccumulator 是一个函数对象,它重载了调用运算符 operator() 来接受两个 Point 对象,并返回一个新的 Point 对象,其中 x 和 y 坐标分别是输入点对应坐标的和。
使用 std::accumulate
现在,可以使用 std::accumulate 和自定义的二元操作来计算一系列 Point 对象的累积和:
#include <iostream>
#include <vector>
#include <numeric>
// 自定义数据结构
class Point {
public:
int x, y;
Point(int x = 0, int y = 0) : x(x), y(y) {}
// 输出点
void print() const {
std::cout << "(" << x << ", " << y << ")" << std::endl;
}
};
// 自定义二元操作
struct PointAccumulator {
Point operator()(const Point& a, const Point& b) const {
return Point(a.x + b.x, a.y + b.y);
}
};
int main() {
// 创建包含点的向量
std::vector<Point> points = {
Point(1, 2),
Point(3, 4),
Point(5, 6)
};
// 使用 std::accumulate 和自定义二元操作计算累积和
Point sum = std::accumulate(points.begin(), points.end(), Point(), PointAccumulator());
// 输出结果
sum.print(); // 输出: (9, 12)
return 0;
}
上面代码的输出为
(9, 12)
这个例子创建了一个包含三个 Point 对象的 std::vector。然后,使用 std::accumulate 来计算这些点的累积和。代码中给 std::accumulate 函数传递了向量的起始和结束迭代器,一个初始的 Point 对象(这里是一个默认构造的 Point),以及的自定义二元操作 PointAccumulator 的一个实例。随后 std::accumulate 遍历向量中的每个点,并使用 PointAccumulator 来合并它们,最终得到一个表示所有点坐标和的 Point 对象。
注意事项
- 自定义二元操作必须能够处理你的数据结构,并返回正确的累积结果。
- 初始值对于 std::accumulate 的结果很重要。对于自定义数据结构,需要提供一个合适的初始值。在这个例子中,使用了 Point 的默认构造函数来创建一个初始点。
- 如果自定义的数据结构包含非数值类型的成员(比如字符串或自定义对象),则需要确保二元操作能够适当地处理这些成员。
通过自定义二元操作,std::accumulate 可以适应各种复杂的累积需求,包括处理自定义数据结构的序列。这使得它成为一个非常强大且灵活的算法工具。
3 std::inner_product
std::inner_product 用于计算两个序列的点积(也称为内积)。点积是一个数学概念,常用于向量运算中,其结果是一个标量,表示两个向量的相似度或夹角。在 C++ 中,std::inner_product 可以应用于任何支持基本算术运算的类型,包括但不限于整数、浮点数以及自定义类型。
3.1 基本用法
std::inner_product 的基本语法如下:
template<class InputIt1, class InputIt2, class T>
T inner_product(InputIt1 first1, InputIt1 last1,
InputIt2 first2, T init);
基本用法中,std::inner_product 会将两个序列中对应位置的元素相乘,并将所有乘积相加,最后返回总和。默认操作是乘法和加法。
#include <iostream>
#include <vector>
#include <numeric>
int main() {
std::vector<int> v1 = { 1, 2, 3 };
std::vector<int> v2 = { 4, 5, 6 };
int result = std::inner_product(v1.begin(), v1.end(), v2.begin(), 0);
std::cout << "Inner product: " << result << std::endl;
return 0;
}
上面代码的输出为
Inner product: 32
上面示例中 std::inner_product 计算的是 1*4 + 2*5 + 3*6 的结果。
3.2 自定义操作
std::inner_product 允许为序列元素的合并和乘积的累加提供自定义的二元操作,其语法如下:
template<class InputIt1, class InputIt2, class T, class BinaryOperation1, class BinaryOperation2>
T inner_product(InputIt1 first1, InputIt1 last1,
InputIt2 first2, T init,
BinaryOperation1 binary_op1,
BinaryOperation2 binary_op2);
- first1, last1:定义第一个输入序列范围的迭代器。
- first2:指向第二个输入序列起始位置的迭代器。
- init:累积运算的初始值。
- binary_op1:一个二元操作,用于合并第一个序列中的元素。默认为加法。
- binary_op2:一个二元操作,用于合并两个序列中对应位置的元素。默认为乘法。
可以通过以下方式提供自定义操作:
- 使用函数对象(functor)或 lambda 表达式:
可以定义一个函数对象(一个带有 operator() 的类)或使用 C++11 引入的 lambda 表达式。
- 使用标准库中的函数对象:
C++ 标准库提供了一些函数对象,如 std::plus<>, std::minus<>, std::multiplies<> 等,可以直接使用它们作为自定义操作。
- 使用函数指针:
如果函数符合二元操作的签名(即接受两个参数并返回一个结果),也可以使用函数指针作为自定义操作。
使用自定义操作的示例
假设有两个整数向量,需要计算它们的“点差积”,即对应元素的差的平方和,而不是通常的点积。
#include <iostream>
#include <vector>
#include <numeric>
#include <functional> // for std::plus<> and std::minus<>
// 自定义的二元操作:计算平方
struct Square {
int operator()(int x) const {
return x * x;
}
};
int main() {
std::vector<int> v1 = { 1, 2, 3 };
std::vector<int> v2 = { 4, 5, 6 };
// 使用自定义操作计算点差积
int result = std::inner_product(v1.begin(), v1.end(), v2.begin(), 0,
std::plus<>(), // 默认的加法用于累加结果
[](int a, int b) { return (a - b) * (a - b); }); // lambda 表达式计算差的平方
std::cout << "Point difference product: " << result << std::endl; // 输出点差积的结果
return 0;
}
上面代码的输出为
Point difference product: 27
这个例子使用了 std::plus<> 作为 binary_op1 来累加结果,但使用了 lambda 表达式作为 binary_op2 来计算两个对应元素的差的平方。这样,std::inner_product 就会计算 (1-4)^2 + (2-5)^2 + (3-6)^2 的结果。
使用标准库中的函数对象的示例
如果不想定义新的函数对象或 lambda 表达式,也可以直接使用标准库提供的函数对象。例如,使用 std::minus<> 和 std::multiplies<> 来计算两个序列对应元素之差的乘积和:
#include <iostream>
#include <vector>
#include <numeric>
#include <functional> // for std::plus<>, std::minus<> and std::multiplies<>
int main() {
std::vector<int> v1 = { 1, 2, 3 };
std::vector<int> v2 = { 4, 5, 6 };
// 使用标准库函数对象计算对应元素之差的乘积和
int result = std::inner_product(v1.begin(), v1.end(), v2.begin(), 0,
std::plus<>(), // 默认的加法用于累加结果
std::multiplies<>()); // 默认的乘法用于计算对应元素的乘积
std::cout << "Sum of differences product: " << result << std::endl; // 输出对应元素之差的乘积和的结果
return 0;
}
上面代码的输出为
Sum of differences product: 32
这个例子使用了 std::plus<> 作为 binary_op1 来累加结果,但使用了 std::multiplies<> 作为 binary_op2 来计算两个对应元素的乘积。这样,std::inner_product 就会计算 (1*4) + (2*5) + (3*6) 的结果。
3.3 自定义数据结构
std::inner_product 是一个通用的算法,它并不直接依赖于特定的数据结构。它接收两个迭代器范围(通常是容器的开始和结束迭代器)以及两个二元操作函数对象或函数指针。因此,开发者可以使用 std::inner_product 来计算任何可迭代的数据结构中元素的某种累积操作,只要提供正确的迭代器和合适的自定义操作。
然而,对于更复杂的数据结构(比如自定义类),可能需要定义合适的操作来匹配 std::inner_product 的期望。这通常意味着需要定义如何合并两个对象(binary_op1)以及如何计算两个对象之间的某种关系(binary_op2)。
下面是一个例子,展示了如何为自定义的数据结构使用 std::inner_product:
#include <iostream>
#include <vector>
#include <numeric>
#include <functional> // for std::plus<>
// 自定义的数据结构
struct Point {
double x, y;
// 假设我们想要计算两个点的内积
Point operator*(const Point& other) const {
return { x * other.x, y * other.y };
}
// 假设我们想要累加点的某个属性,比如 x 坐标的和
Point operator+(const Point& other) const {
return { x + other.x, y + other.y };
}
};
int main() {
std::vector<Point> points = { {1, 2}, {3, 4}, {5, 6} };
// 初始化一个用于累加的点,这里我们初始化为 {0, 0}
Point initial_sum = { 0, 0 };
// 使用 std::inner_product 计算所有点的内积和
// 这里我们不需要自定义 binary_op1,因为 Point 类型已经定义了 + 操作符
// 但我们需要自定义 binary_op2 来计算两个点的内积
Point result = std::inner_product(points.begin(), points.end(), points.begin(), initial_sum,
std::plus<>(),
[](const Point& a, const Point& b) { return a * b; });
std::cout << "Sum of inner products: (" << result.x << ", " << result.y << ")" << std::endl;
return 0;
}
上面代码的输出为
Sum of inner products: (35, 56)
在这个例子中,Point 结构体定义了两个操作符:operator* 用于计算两个点的内积,operator+ 用于累加点的坐标。当调用 std::inner_product 时,这里传递了 std::plus<> 作为 binary_op1,它将用于累加点的坐标。同时,这里也提供了一个 lambda 表达式作为 binary_op2,它使用 operator* 来计算两个点的内积。
注意:这里的 binary_op1 和 binary_op2 的参数和返回类型需要与迭代器所指向的数据类型(在这里是 Point)兼容。binary_op1 应该接受两个 Point 对象并返回一个 Point 对象,而 binary_op2 应该接受两个 Point 对象并返回一个可以用于累加的值(在这里是一个 double 类型的内积)。