今天参加了LeetCode第153场周赛,其中第三题和一道经典题目——连续子数组的最大和很像。
我们这道题目的解法和之前这道经典题目的思路有些关系,连续子数组的最大和的解法见链接
题目描述
给你一个整数数组,返回它的某个 非空 子数组(连续元素)在执行一次可选的删除操作后,所能得到的最大元素总和。
换句话说,你可以从原数组中选出一个子数组,并可以决定要不要从中删除一个元素(只能删一次哦),(删除后)子数组中至少应当有一个元素,然后该子数组(剩下)的元素总和是所有子数组之中最大的。
注意,删除一个元素后,子数组 不能为空。
请看示例:
示例 1:
输入: arr = [1,-2,0,3]
输出: 4
解释: 我们可以选出 [1, -2, 0, 3],然后删掉 -2,这样得到 [1, 0, 3],和最大。
示例 2:
输入: arr = [1,-2,-2,3]
输出: 3
解释: 我们直接选出 [3],这就是最大和。
示例 3:
输入: arr = [-1,-1,-1,-1]
输出: -1
解释: 最后得到的子数组不能为空,所以我们不能选择 [-1] 并从中删去 -1 来得到 0。
我们应该直接选择 [-1],或者选择 [-1, -1] 再从中删去一个 -1。
提示:
1 <= arr.length <= 10^5
-10^4 <= arr[i] <= 10^4
题目分析
题目中提到:可以从子数组中选择是否要删除一个元素,因此在遍历到数组每一个元素的时候,都要比较从第一个元素到该元素为止,删除元素或者不删除元素的最大连续子数组和。
- 不删除元素的最大连续子数组和就是上面提到的经典题目,记为
sum_i_0
- OK,那么我们在遍历到每一个元素的时候,对应的删除元素的最大连续子数组和记为
sum_i_1
,这个值应该怎么求,这里要用到动态规划,没错又是动态规划,那么这个值的求法就肯定和上一步的连续子数组和有关系,比如我们遍历到第i
个元素,那么当前元素是arr[i]
,这时候的情况分两种:删除arr[i]
和保留arr[i]
。如果删除arr[i]
,那么要加上i-1
的不删除元素的最大连续子数组和sum_(i-1)_0
,即0 + sum_(i-1)_0
;如果不删除arr[i]
,那么要加上i-1
的删除元素的最大连续子数组和sum_(i-1)_1
。(总之就是,arr[i]
不删除,前面就要删除一个,arr[i]
删除了,前面就不要删除元素了)
代码
代码来自LeetCode 用户 Rui
我将他的代码改成了python版本
class Solution:
def maximumSum(self, arr):
n = len(arr)
dp_i_0 = -1e4
dp_i_1 = -1e4
ans = -(1e5)
for i in range(0, n):
dp_i_1 = max(dp_i_1 + arr[i], dp_i_0) # 利用动态规划求 最大连续子数组和(删除元素)
dp_i_0 = max(dp_i_0 + arr[i], arr[i]) # 这一行就是求 最大连续子数组和(不删除元素)
ans = max(ans, max(dp_i_0, dp_i_1))
return ans
可能上面描述的也不是很清楚,大家有什么疑问可以在评论区评论进行讨论