LeetCode474. 一和零
在计算机界中,我们总是追求用有限的资源获取最大的收益。
现在,假设你分别支配着 m 个 0 和 n 个 1。另外,还有一个仅包含 0 和 1 字符串的数组。
你的任务是使用给定的 m 个 0 和 n 个 1 ,找到能拼出存在于数组中的字符串的最大数量。每个 0 和 1 至多被使用一次。
注意:
给定 0 和 1 的数量都不会超过 100。
给定字符串数组的长度不会超过 600。
示例 1:
输入: Array = {“10”, “0001”, “111001”, “1”, “0”}, m = 5, n = 3
输出: 4
解释: 总共 4 个字符串可以通过 5 个 0 和 3 个 1 拼出,即 “10”,“0001”,“1”,“0” 。
示例 2:
输入: Array = {“10”, “0”, “1”}, m = 1, n = 1
输出: 2
解释: 你可以拼出 “10”,但之后就没有剩余数字了。更好的选择是拼出 “0” 和 “1” 。
思路:
和01背包是很相似的题目,只不过背包问题是装一种东西,而我们这道题要求的是装上两种东西,也就是1和0。
我们的1和0相当于两类物品,n和m就是它们所对应的容量。
我们的到第 i 个字符串时, 它所对应的可以组成最多的字符串个数则就对应为:
dp[m][n] = MAX( dp[m][n], dp[m-count0][n-count1] + 1 )
和01背包是很相似的题目,只不过背包问题是装一种东西,而我们这道题要求的是装上两种东西,也就是1和0。
我们的1和0相当于两类物品,n和m就是它们所对应的容量。
我们的到第 i 个字符串时, 它所对应的可以组成最多的字符串个数则就对应为:
dp[m][n] = MAX( dp[m][n], dp[m-count0][n-count1] + 1 )
还要注意dp数组要从后往前进行呀,这样的话才能一直递归到最底层,保存完了在出来,不然还要去从头开始一个一个的给状态值
class test3 {
public static void main(String[] args) {
String arr[] = {"10","0001", " 111001", "1","0"};
int m = 5;
int n =3;
// int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
Solution s = new Solution();
int x = s.findMaxForm(arr,m,n);
System.out.println(x);
}
static class Solution {
public int findMaxForm(String[] strs, int m, int n) {
int[][] dp = new int[m+1][n+1];
for(String str : strs){
int count1 = 0;
int count0 = 0;
for (int i = 0; i < str.length(); i++) {
if (str.charAt(i) == '1') count1 ++;
else count0 ++;
}
if (count0 > m || count1 > n)continue;
for (int i = m; i >= count0 ; i--) {
for (int j = n; j >= count1 ; j--) {
dp[i][j] = Math.max(dp[i][j], dp[i-count0][j-count1] + 1);
}
}
}
return dp[m][n];
}
}
}