H-畅通工程(并查集模板)
题面
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。
Sample Input
4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0
Sample Output
1
0
2
998
Huge input, scanf is recommended.
题目分析
基础并查集,套用模板即可。至少要有N-1座桥,令计数器cnt=N-1,每新连接一座城市就让cnt–,最后输出cnt。
代码
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int par[1005];
int ran[1005];
int cnt;
//模板:
void init(int n) //初始化n个元素
{
for(int i=1;i<=n;i++)
{
par[i]=i;
ran[i]=0;
}
}
int find(int x) //查询树的根
{
if(par[x]==x){
return x;
}else{
return par[x] = find( par[x] );
}
}
void unite(int x,int y)//合并x和y所属集合
{
x=find(x);
y=find(y);
if(x==y) return ;
cnt--;
if(ran[x]<ran[y]){
par[x]=y;
}else{
par[y]=x;
if(ran[x]==ran[y])ran[x]++;
}
}
// :模板
int main()
{
int N,M;
while(~scanf("%d",&N))
{
if(N==0)break;
scanf("%d",&M);
init(N);
cnt=N-1;
while(M--)
{
int a,b;
scanf("%d%d",&a,&b);
unite(a,b);
}
printf("%d\n",cnt);
}
return 0;
}