MySQL查询数据库

1.爬虫到数据库

下面为代码:

# 程序功能:爬豆瓣电影上指定电影的短评
# 原创作者:马哥python说
import pymysql
import requests
from bs4 import BeautifulSoup
import pandas as pd
import os
import random
from time import sleep

# 请求头
h1 = {
    'Cookie': 'push_doumail_num=0; push_noty_num=0; __utma=30149280.1151507141.1691746479.1691838193.1691884263.3; __utmb=30149280.2.10.1691884263; __utmc=30149280; __utmv=30149280.26293; __utmz=30149280.1691746479.1.1.utmcsr=baidu|utmccn=(organic)|utmcmd=organic; __utma=223695111.1188941628.1691838193.1691838193.1691884263.2; __utmb=223695111.0.10.1691884263; __utmc=223695111; __utmz=223695111.1691838193.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); _pk_id.100001.4cf6=610164de88bfd1f6.1691838192.; _pk_ses.100001.4cf6=1; frodotk_db="476b96b00b85eedcd642c4102291cc94"; _vwo_uuid_v2=D9E118F4F6B78D49AA45E890651B60D83|f7399d09229b7a7906e386d7de9b51e3; __gads=ID=44e41150db843457-229c4d3ad1e200f5:T=1691884287:RT=1691884287:S=ALNI_Mb0FbtUn4Dl5XTVzWTi_bgHI2jyXw; __gpi=UID=00000c2be27ac58c:T=1691884287:RT=1691884287:S=ALNI_Mb-thWIP8vXox9B-gc1my-oFwNKdQ; __yadk_uid=X3aHdYAhG4sEH2yWtFmZSGWsvKkUwVcE; ll="118088"; __utmt=1; ap_v=0,6.0; ck=TvDm; dbcl2="262932835:S3nkDWyGCm4"; bid=bMogmzojhhM',
    'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
    'Accept-Encoding': 'gzip, deflate',
    'Host': 'movie.douban.com',
    'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/15.4 Safari/605.1.15',
    'Accept-Language': 'zh-CN,zh-Hans;q=0.9',
    'Referer': 'https://movie.douban.com/subject/35267224/?from=showing',
    'Connection': 'keep-alive'
}


def trans_star(v_str):
    """转换评论星级"""
    v_str = v_str[0]
    if v_str == 'allstar10':
       return '1星'
    elif v_str == 'allstar20':
       return '2星'
    elif v_str == 'allstar30':
       return '3星'
    elif v_str == 'allstar40':
       return '4星'
    elif v_str == 'allstar50':
       return '5星'
    else:
       return '未知'


def get_short(v_movie_id, dt=None):
    """爬取短评数据"""
    for page in range(1, max_page + 1):  # 爬取前n页
       requests.packages.urllib3.disable_warnings()
       # 请求地址
       url = 'https://movie.douban.com/subject/{}/comments?start={}&limit=20&status=P&sort=new_score'.format(
          v_movie_id, (page - 1) * 20)
       # 发送请求
       response = requests.get(url, headers=h1, verify=False)
       print(response.status_code)
       # 解析页面数据
       soup = BeautifulSoup(response.text, 'html.parser')
       # 所有评论数据
       reviews = soup.find_all('div', {'class': 'comment'})
       print('开始爬取第{}页,共{}条评论'.format(page, len(reviews)))
       sleep(random.uniform(1, 2))
       # 定义空列表用于存放数据
       user_name_list = []  # 评论者昵称
       star_list = []  # 评论星级
       time_list = []  # 评论时间
       ip_list = []  # 评论者ip属地
       vote_list = []  # 有用数
       content_list = []  # 评论内容
       for review in reviews:
          # 评论者昵称
          user_name = review.find('span', {'class': 'comment-info'}).find('a').text
          user_name_list.append(user_name)
          # 评论星级
          star = review.find('span', {'class': 'comment-info'}).find_all('span')[1].get('class')
          star = trans_star(star)
          star_list.append(star)
          # 评论时间
          time2 = review.find('span', {'class': 'comment-time'}).text.strip()
          print('评论时间:', time2)
          time_list.append(time2)
          # 评论者IP属地
          ip = review.find('span', {'class': 'comment-location'}).text
          ip_list.append(ip)
          # 有用数
          vote = review.find('span', {'class': 'votes vote-count'}).text
          vote_list.append(vote)
          # 评论内容
          content = review.find('span', {'class': 'short'}).text
          content = content.replace(',', ',').replace(' ', '').replace('\n', '').replace('\t', '').replace('\r', '')
          content_list.append(content)
       df = pd.DataFrame(
          {
             '页码': page,
             '评论者昵称': user_name_list,
             '评论星级': star_list,
             '评论时间': time_list,
             '评论者IP属地': ip_list,
             '有用数': vote_list,
             '评论内容': content_list,
          }
       )

    data_json = df.to_dict(orient='records')

    for dt in data_json:
       print(dt)
       # 定义sql语句
       sql = 'insert into douban_data values ("%s","%s","%s","%s","%s","%s","%s")' % (dt['页码'], dt['评论者昵称'],dt["评论星级"],dt["评论时间"],dt["评论者IP属地"],dt["有用数"], dt["评论内容"])
       cursor.execute(sql)  # 执行语句
       db.commit()

       # 设置csv文件表头
       if os.path.exists(result_file):
          header = False
       else:
          header = True
       # 保存到csv文件
       df.to_csv(result_file, mode='a+', header=header, index=False, encoding='utf_8_sig')
       print('文件保存成功:', result_file)


if __name__ == '__main__':

    # 定义数据库
    # host:地址    potr:端口     user:用户名    password:密码     db:数据库名     charset:编码
    db = pymysql.connect(host="localhost", port=3306, user="root", password="ping1212", db="douban", charset="utf8mb4")
    cursor = db.cursor()  # 创建游标
    # 电影id
    movie_id = '35556001'
    # 最大爬取页
    max_page = 10  # 最大为10页
    # 保存文件名
    result_file = '豆瓣短评_{}_前{}页.csv'.format(movie_id, max_page)
    # 如果csv文件存在,先删除之
    if os.path.exists(result_file):
       os.remove(result_file)
       print('结果文件存在,已删除: {}'.format(result_file))
    # 循环爬取短评
    get_short(movie_id)
2.创建数据库表格

3.运行代码,得到结果

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值