1.爬虫到数据库
下面为代码:
# 程序功能:爬豆瓣电影上指定电影的短评
# 原创作者:马哥python说
import pymysql
import requests
from bs4 import BeautifulSoup
import pandas as pd
import os
import random
from time import sleep
# 请求头
h1 = {
'Cookie': 'push_doumail_num=0; push_noty_num=0; __utma=30149280.1151507141.1691746479.1691838193.1691884263.3; __utmb=30149280.2.10.1691884263; __utmc=30149280; __utmv=30149280.26293; __utmz=30149280.1691746479.1.1.utmcsr=baidu|utmccn=(organic)|utmcmd=organic; __utma=223695111.1188941628.1691838193.1691838193.1691884263.2; __utmb=223695111.0.10.1691884263; __utmc=223695111; __utmz=223695111.1691838193.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); _pk_id.100001.4cf6=610164de88bfd1f6.1691838192.; _pk_ses.100001.4cf6=1; frodotk_db="476b96b00b85eedcd642c4102291cc94"; _vwo_uuid_v2=D9E118F4F6B78D49AA45E890651B60D83|f7399d09229b7a7906e386d7de9b51e3; __gads=ID=44e41150db843457-229c4d3ad1e200f5:T=1691884287:RT=1691884287:S=ALNI_Mb0FbtUn4Dl5XTVzWTi_bgHI2jyXw; __gpi=UID=00000c2be27ac58c:T=1691884287:RT=1691884287:S=ALNI_Mb-thWIP8vXox9B-gc1my-oFwNKdQ; __yadk_uid=X3aHdYAhG4sEH2yWtFmZSGWsvKkUwVcE; ll="118088"; __utmt=1; ap_v=0,6.0; ck=TvDm; dbcl2="262932835:S3nkDWyGCm4"; bid=bMogmzojhhM',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Encoding': 'gzip, deflate',
'Host': 'movie.douban.com',
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/15.4 Safari/605.1.15',
'Accept-Language': 'zh-CN,zh-Hans;q=0.9',
'Referer': 'https://movie.douban.com/subject/35267224/?from=showing',
'Connection': 'keep-alive'
}
def trans_star(v_str):
"""转换评论星级"""
v_str = v_str[0]
if v_str == 'allstar10':
return '1星'
elif v_str == 'allstar20':
return '2星'
elif v_str == 'allstar30':
return '3星'
elif v_str == 'allstar40':
return '4星'
elif v_str == 'allstar50':
return '5星'
else:
return '未知'
def get_short(v_movie_id, dt=None):
"""爬取短评数据"""
for page in range(1, max_page + 1): # 爬取前n页
requests.packages.urllib3.disable_warnings()
# 请求地址
url = 'https://movie.douban.com/subject/{}/comments?start={}&limit=20&status=P&sort=new_score'.format(
v_movie_id, (page - 1) * 20)
# 发送请求
response = requests.get(url, headers=h1, verify=False)
print(response.status_code)
# 解析页面数据
soup = BeautifulSoup(response.text, 'html.parser')
# 所有评论数据
reviews = soup.find_all('div', {'class': 'comment'})
print('开始爬取第{}页,共{}条评论'.format(page, len(reviews)))
sleep(random.uniform(1, 2))
# 定义空列表用于存放数据
user_name_list = [] # 评论者昵称
star_list = [] # 评论星级
time_list = [] # 评论时间
ip_list = [] # 评论者ip属地
vote_list = [] # 有用数
content_list = [] # 评论内容
for review in reviews:
# 评论者昵称
user_name = review.find('span', {'class': 'comment-info'}).find('a').text
user_name_list.append(user_name)
# 评论星级
star = review.find('span', {'class': 'comment-info'}).find_all('span')[1].get('class')
star = trans_star(star)
star_list.append(star)
# 评论时间
time2 = review.find('span', {'class': 'comment-time'}).text.strip()
print('评论时间:', time2)
time_list.append(time2)
# 评论者IP属地
ip = review.find('span', {'class': 'comment-location'}).text
ip_list.append(ip)
# 有用数
vote = review.find('span', {'class': 'votes vote-count'}).text
vote_list.append(vote)
# 评论内容
content = review.find('span', {'class': 'short'}).text
content = content.replace(',', ',').replace(' ', '').replace('\n', '').replace('\t', '').replace('\r', '')
content_list.append(content)
df = pd.DataFrame(
{
'页码': page,
'评论者昵称': user_name_list,
'评论星级': star_list,
'评论时间': time_list,
'评论者IP属地': ip_list,
'有用数': vote_list,
'评论内容': content_list,
}
)
data_json = df.to_dict(orient='records')
for dt in data_json:
print(dt)
# 定义sql语句
sql = 'insert into douban_data values ("%s","%s","%s","%s","%s","%s","%s")' % (dt['页码'], dt['评论者昵称'],dt["评论星级"],dt["评论时间"],dt["评论者IP属地"],dt["有用数"], dt["评论内容"])
cursor.execute(sql) # 执行语句
db.commit()
# 设置csv文件表头
if os.path.exists(result_file):
header = False
else:
header = True
# 保存到csv文件
df.to_csv(result_file, mode='a+', header=header, index=False, encoding='utf_8_sig')
print('文件保存成功:', result_file)
if __name__ == '__main__':
# 定义数据库
# host:地址 potr:端口 user:用户名 password:密码 db:数据库名 charset:编码
db = pymysql.connect(host="localhost", port=3306, user="root", password="ping1212", db="douban", charset="utf8mb4")
cursor = db.cursor() # 创建游标
# 电影id
movie_id = '35556001'
# 最大爬取页
max_page = 10 # 最大为10页
# 保存文件名
result_file = '豆瓣短评_{}_前{}页.csv'.format(movie_id, max_page)
# 如果csv文件存在,先删除之
if os.path.exists(result_file):
os.remove(result_file)
print('结果文件存在,已删除: {}'.format(result_file))
# 循环爬取短评
get_short(movie_id)
2.创建数据库表格
3.运行代码,得到结果