1、SSD提供了一种用于目标检测的方法,仅仅使用了一个深度神经网络。
--这是相对于RCNN的训练来说的,因为对于Faster Rcnn,需要训练RPN网络以及fast rcnn网络。
2、SSD的特别之处:
--就像摘要里说的那样,它把最终要输出的bounding box预先固定在默认设置好的特征图上,意思是你给网络输入一个图片,它肯定会产生很多特征图,而我就在特征图上预先声明好很多box,你最后要得到的bounding box就是从已经声明好的box里挑出来的,当然不是直接拿来就用,而是把挑到的box进行调整。
--还强调了一点,这些预先设定的box形态各异,因为图片上的物体有各种形状,为了使得能更快的更精确的调整box使其能与图片上的物体的形状更吻合,所以先设定长宽比例不同的box。
3、SSD的预测:
--在预测阶段呢,操刀的地方就是预设的那些box,对这些box覆盖的区域进行分类,比如21类,分类的话肯定会产生每一类的得分是多少
--除了预测分类任务,还要调整这些box的大小及形状,就得到了物体的位置,也就是我们看到的框框。
4、对于大小不一的物体怎么统一检测呢?
--SSD说,它采用了从不同“”分辨率“”的特征图上设置预设box的方法,我直觉上感觉它说的道理行得通。
5、SSD的自我总结:
--我跟YOLO一样简单都是a single-shot detector for multiple categories,但是我比它快,比它精确,还有,我承认Faster Rcnn很精确,但是我比它快。
--我的核心科技在于我是对那些