对SSD的理解

SSD是一种高效的目标检测方法,通过单一深度神经网络实现。与Faster R-CNN相比,SSD预定义了不同比例和大小的边界框在特征图上,简化了检测过程。预测阶段,SSD在不同分辨率的特征图上进行分类和位置调整,适用于不同大小的物体检测。其网络结构包括基础网络和辅助结构,用于多尺度特征检测和预测。SSD以其速度和精度优于YOLO,且比Faster R-CNN更快。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、SSD提供了一种用于目标检测的方法,仅仅使用了一个深度神经网络。

--这是相对于RCNN的训练来说的,因为对于Faster Rcnn,需要训练RPN网络以及fast rcnn网络。

2、SSD的特别之处:

--就像摘要里说的那样,它把最终要输出的bounding box预先固定在默认设置好的特征图上,意思是你给网络输入一个图片,它肯定会产生很多特征图,而我就在特征图上预先声明好很多box,你最后要得到的bounding box就是从已经声明好的box里挑出来的,当然不是直接拿来就用,而是把挑到的box进行调整。

--还强调了一点,这些预先设定的box形态各异,因为图片上的物体有各种形状,为了使得能更快的更精确的调整box使其能与图片上的物体的形状更吻合,所以先设定长宽比例不同的box。

3、SSD的预测:

--在预测阶段呢,操刀的地方就是预设的那些box,对这些box覆盖的区域进行分类,比如21类,分类的话肯定会产生每一类的得分是多少

--除了预测分类任务,还要调整这些box的大小及形状,就得到了物体的位置,也就是我们看到的框框。

4、对于大小不一的物体怎么统一检测呢?

--SSD说,它采用了从不同“”分辨率“”的特征图上设置预设box的方法,我直觉上感觉它说的道理行得通。

5、SSD的自我总结:

--我跟YOLO一样简单都是a single-shot detector for multiple categories,但是我比它快,比它精确,还有,我承认Faster Rcnn很精确,但是我比它快。

--我的核心科技在于我是对那些

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值