纪中DAY6做题小结

T1:粉刷匠

Description
windy有 N 条木板需要被粉刷。
每条木板被分为 M 个格子。
每个格子要被刷成红色或蓝色。
windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。
每个格子最多只能被粉刷一次。
如果windy只能粉刷 T 次,他最多能正确粉刷多少格子?
一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。

Input
第一行包含三个整数,N M T。
接下来有N行,每行一个长度为M的字符串,'0’表示红色,'1’表示蓝色。

Output
输出一个整数,表示最多能正确粉刷的格子数。

Sample Input
3 6 3
111111
000000
001100

Sample Output
16

Hint
100%的数据,满足 1 <= N,M <= 50 ; 0 <= T <= 2500 。

简要思路:本题可用简单的区间DP,我用cnt[i] [j]来统计前i-1行(i为1时例外)以及第i行前j个格子中蓝色(两种任选一种)的数量;g[i][k][l]统计第i行粉刷k次粉刷了前l格后最大正确粉刷的格子数;而f[i][j]统计粉刷了i行进行了j次粉刷后最大正确粉刷的格子数。具体见代码。

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int n , m , t;
int cnt[55][55] , f[55][2505] , g[55][2505][55];
char ss[55];
int main () {
	scanf("%d%d%d",&n,&m,&t);
	for ( int i = 1 ; i <= n ; ++i ) {
		scanf("%s",ss);
		for ( int j = 1 ; j <= m ; ++j ) {
			if ( ss[j - 1] == '1' ) {
				cnt[i][j] = cnt[i][j - 1] + 1;
			} else {
				cnt[i][j] = cnt[i][j - 1];
			}
		}
	}
	for ( int i = 1 ; i <= n ; ++i ) {
		for ( int k = 1 ; k <= m ; ++k ) {
			for ( int l = 0 ; l <= m ; ++l ) {
				for ( int q = k - 1 ; q <= l - 1 ; ++q ) {
					g[i][k][l] = max( g[i][k][l] , g[i][k - 1][q] + max( cnt[i][l] - cnt[i][q] , l - q - cnt[i][l] + cnt[i][q] ) );
				}
			}
		}
	}
	for ( int i = 1 ; i <= n ; ++i ) {
		for ( int j = 1 ; j <= t ; ++j ) {
			for ( int k = 0 ; k <= min( j , m ) ; ++k ) {
				f[i][j] = max( f[i][j] , f[i - 1][j - k] + g[i][k][m] );//粉刷完一行不会比只粉刷一部分差 
			}
		}
	}
	printf("%d",f[n][t]);//用完粉刷次数不会比没用完差 
	return 0;
}

T2:迷路

Description
windy在有向图中迷路了。
该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1。
现在给出该有向图,你能告诉windy总共有多少种不同的路径吗?
注意:windy不能在某个节点逗留,且通过某有向边的时间严格为给定的时间。

Input
第一行包含两个整数,N T。
接下来有 N 行,每行一个长度为 N 的字符串。
第i行第j列为’0’表示从节点i到节点j没有边。
为’1’到’9’表示从节点i到节点j需要耗费的时间。

Output
输出一个整数,可能的路径数,这个数可能很大,只需输出这个数除以2009的余数。

Sample Input
输入1:
2 2
11
00
输入2:
5 30
12045
07105
47805
12024
12345

Sample Output
输出1:
1
输出2:
852

Hint
100%的数据,满足 2 <= N <= 10 ; 1 <= T <= 1000000000 。

简要思路:本题主要是用邻接矩阵加矩阵快速幂来求解的(然而我在考试时还不会 ),先考虑边长全为1的情况,则邻接矩阵AK中的第i行第j列中的数可表示从i到j经过k步的方法数。证明如下:考虑矩阵C为矩阵A乘矩阵B的积,对于第i行第j列的数有 C [ i ] [ j ] = ∑ k = 1 n A [ i ] [ k ] ∗ B [ k ] [ j ] C[i][j] = \sum_{k=1}^n A[i][k] * B[k][j] C[i][j]=k=1nA[i][k]B[k][j] A [ i ] [ k ] A[i][k] A[i][k]表示点i到k的道路数, B [ k ] [ j ] B[k][j] B[k][j]表示点k到j的道路数时,由乘法原理可知相应的 C [ i ] [ j ] C[i][j] C[i][j]即为i到j的道路数。通过这一点可由2次幂推广到k次幂,并且如果初始矩阵存的是一步的边,则几次幂代表走了几步。
接下来考虑边长不唯一的情况,由题可知边长为[1,9]的整数,又因为N的范围小,所以我们可以将一个点拆成九个点,若从i到j的边长为k,则从i的第k个点连一条线到j的第1个点(即给矩阵第9 * ( i - 1 ) + k行第9 * ( j - 1 ) + 1列赋值为1)。

#include <iostream>
#include <cstdio>
#include <cstring>
#define ll long long
#define mod 2009
using namespace std;
int n , t , bcnt , nn;
int aa[105][105] , bb[105][105] , cc[105][105];
char ss[105];
void qt() {
	while ( t ) {
		if ( t & 1 ) {
			memset( cc , 0 , sizeof(cc) );
			for ( int i = 1 ; i <= nn ; ++i ) {
				for ( int j = 1 ; j <= nn ; ++j ) {
					for ( int k = 1 ; k <= nn ; ++k ) {
						cc[i][j] = ( cc[i][j] + ( bb[i][k] * aa[k][j] ) % mod ) % mod;
					}
				}
			}
			for ( int i = 1 ; i <= nn ; ++i ) {
				for ( int j = 1 ; j <= nn ; ++j ) {
					bb[i][j] = cc[i][j];
				}
			}
		}
		memset( cc , 0 , sizeof(cc) );
		for ( int i = 1 ; i <= nn ; ++i ) {
			for ( int j = 1 ; j <= nn ; ++j ) {
				for ( int k = 1 ; k <= nn ; ++k ) {
					cc[i][j] = ( cc[i][j] + ( aa[i][k] * aa[k][j] ) % mod ) % mod;
				}
			}
		}
		for ( int i = 1 ; i <= nn ; ++i ) {
			for ( int j = 1 ; j <= nn ; ++j ) {
				aa[i][j] = cc[i][j];
			}
		}
		t >>= 1;
	}
	return;
}
int main() {
	scanf("%d%d",&n,&t);
	nn = n * 9;
	for ( int i = 1 ; i <= n ; ++i ) {
		for ( int j = 1 ; j <= 8 ; ++j ) {
			aa[9 * ( i - 1 ) + j][9 * ( i - 1 ) + j + 1] = 1;
		}
	}
	for ( int i = 1 ; i <= n ; ++i ) {
		scanf("%s",ss);
		for ( int j = 1 ; j <= n ; ++j ) {
			if ( ss[j - 1] != '0' ) {
				int num = ss[j - 1] - '0';
				aa[9 * ( i - 1 ) + num][9 * ( j - 1 ) + 1] = 1;
			}
		}
	}
	for ( int i = 1 ; i <= nn ; ++i ) {
		bb[i][i] = 1;
	}
	qt();
	printf("%d",bb[1][9 * (n - 1) + 1]);
	return 0;
}

T3:游戏

Description
windy学会了一种游戏。 对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应。 最开始windy把数字按顺序1,2,3,……,N写一排在纸上。 然后再在这一排下面写上它们对应的数字。 然后又在新的一排下面写上它们对应的数字。 如此反复,直到序列再次变为1,2,3,……,N。 如: 1 2 3 4 5 6 对应的关系为 1->2 2->3 3->1 4->5 5->4 6->6 windy的操作如下
1 2 3 4 5 6
2 3 1 5 4 6
3 1 2 4 5 6
1 2 3 5 4 6
2 3 1 4 5 6
3 1 2 5 4 6
1 2 3 4 5 6
这时,我们就有若干排1到N的排列,上例中有7排。 现在windy想知道,对于所有可能的对应关系,有多少种可能的排数。

Input
一个整数,N。

Output
一个整数,可能的排数。

Sample Input
输入1:
3
输入2:
1000

Sample Output
输出1:
3
输出2:
3018714402027

Hint
100%的数据,满足 1 <= N <= 1000 。

简要思路:本题题意有点晦涩(可能是我语文不好 ),由样例可知,在随机生成的数字对应关系所形成的每个数字环中(如样例中的1->2 2->3 3->1),该数环循环周期为数环长度,整个周期为所有数环的最小公倍数。由此看来,本题应该是对于总长为n的序列,其中n1+n2+…+nk<=n(不到n可由1补齐,长为1的数环对总周期无影响),求所有符合条件的这些数的最小公倍数的种类数。
搞清楚题意后,我们开始着手解题,由唯一分解定理,每个大于1的自然数均可写为质数的积,而且这些素因子按大小排列之后,写法仅有一种方式。我们考虑利用素数解题,先从小到大筛出所有小于n的质数,列出DP方程f[i][j]表示使用前i个质数构造出数j后最小公倍数的情况。具体见代码。

#include <iostream>
#include <cstdio>
#include <cstring>
#define ll long long
using namespace std;
const int N = 1005;
int tot , n;
int vis[N] , prime[175];
ll dp[175][N];
int main () {
	scanf("%d",&n);
	for ( int i = 2 ; i <= n ; ++i ) {
		if ( !vis[i] ) {
			prime[++tot] = i;
		}
		for ( int j = 1 ; j <= tot ; ++j ) {
			if ( i * prime[j] > n ) {
				break;
			}
			vis[i * prime[j]] = 1;
			if ( i % prime[j] == 0 ) {
				break;
			}
		}
	}//线性欧拉筛 
	dp[0][0] = 1;//初始化 
	for ( int i = 1 ; i <= tot ; ++i ) {
		for ( int j = 0 ; j <= n ; ++j ) {
			dp[i][j] = dp[i - 1][j];
		}
		for ( int j = prime[i] ; j <= n ; j *= prime[i] ) {
			for ( int k = 0 ; k + j <= n ; ++k ) {
				dp[i][j + k] += dp[i - 1][k]; 
			}
		}
	}
	ll ans = 0;
	for ( int i = 0 ; i <= n ; ++i ) {
		ans += dp[tot][i];
	}
	printf("%lld",ans);
	return 0;
}

T4:windy数

Description
windy定义了一种windy数。
不含前导零且相邻两个数字之差至少为2的正整数被称为windy数。
windy想知道,在A和B之间,包括A和B,总共有多少个windy数?

Input
两个整数,A B。

Output
一个整数,表示A~B中有多少个windy数。

Sample Input
1 10

Sample Output
9

Hint
100%的数据,满足 1 <= A <= B <= 2000000000 。

简要思路:数位DP板题,不多解释,会数位DP的应该没问题。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#define ll long long
using namespace std;
ll a , b;
ll f[15][15];
int num[11];
ll dp( int pre , int digit , bool pd ) {
	if ( !digit ) {
		return 1;
	}
	if ( !pd && f[pre][digit] != -1 ) {
		return f[pre][digit];
	}
	int maxn = pd ? num[digit] : 9;
	ll tot = 0;
	for ( int i = 0 ; i <= maxn ; ++i ) {
		if ( abs( pre - i ) < 2 ) {
			continue;
		}
		if ( i == 0 && pre == 11 ) {
			tot += dp( 11 , digit - 1 , pd && i == maxn );//特判前导零 
		} else {
			tot += dp( i , digit - 1 , pd && i == maxn );
		}
	}
	if ( !pd ) {
		f[pre][digit] = tot;
	}
	return tot;
}
ll solve( ll cur ) {
	int tot = 0;
	while ( cur ) {
		num[++tot] = cur % 10;
		cur /= 10;
	}
	return dp( 11 , tot , true );
}
int main () {
	memset( f , -1 , sizeof(f) );
	scanf("%lld",&a);
	scanf("%lld",&b);
	printf("%lld",solve(b) - solve(a - 1));
	return 0;
}
  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值