【GAN】是什么让GAN成为了这5年里深度学习领域最亮的崽?

4b55c5b602befedaa61e2c62e688dd7a.png

游戏、VR领域

颠覆传统人类美工的工作方式

生成全真实的场景

GAN说:“我能行!”

11ffe4f9b24d24a97bf485fffcd68b56.png

VR场景

电影、视频领域

使全虚拟演员、偶像成为可能

一种全新的感觉和体验

GAN说:“我可以!”

1a2b4a4fea25a3fc316e22b577c79a7a.png

假明星脸生成

7ec0986601700722e763fe80dacb7820.png

虚拟偶像

电子商务领域

想要实现真实的“虚拟试衣间”

足不出户就可以体验买买买

GAN说:“我可以!”

1e7f94c18137b5338859d1a2c66c5a04.png

虚拟试衣

IT领域

脱发是一个经典问题

还没秃的时候怎么看自己的大秃头

GAN说:“我可以!”

f566bcd054fd26d89c2413dc33282080.png

秃头生成器

除此之外,在艺术创作领域

文字语义生成图片、

从低分辨率图片生成高分辨率图片、

照片缺陷自动修复......

都运用到GAN,GAN都能行!

1e0bf624276b313c5b2262c386662e0c.png

实战案例

GAN的应用比较广泛

GAN的发展十分迅速

GAN的变种层出不穷

可以说,这5年里深度学习领域最亮的崽(仔)就是GAN

......

生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。

GAN最经典与核心的应用就是图像生成,为了帮助大家系统性解决所有图像生成GAN领域知识的学习,我们推出了《深度学习之图像生成GAN-理论实践篇》专栏课程。课程的主体部分已经更新完毕,为了帮助学员掌握好图像生成GAN的基础原理、解决好深度学习图像生成GAN的基本问题,我们也将结合实际项目,将所学理论应用于实践。

35381bb7e7a8f0beb2d5500d2b89f135.png

深度学习之图像生成GAN二维码

图像生成GAN完整课程介绍

本课程内容包括图像生成GAN的理论知识和实践内容,内容详细,案例丰富。涉及图像生成的各个经典算法与实践,时长超过5个小时。

下面是当前课程的大纲脑图:

df3e07585a7f5ccf4ba96474fda4e949.png

(1) 理论部分完善。本部分专注于图像生成相关的GAN,覆盖了基本GAN,条件GAN,多尺度GAN,StyleGAN的讲解,以及GAN的典型应用。既有足够的宽度,也具备有足够的深度,后续还会增加3D与视频的部分内容。

(2) 配套实践案例。当前共有2个案例实践,分别为DCGAN人脸嘴唇表情生成任务,StyleGAN人脸图像生成任务,并配套有代码与数据集,可循序渐进学习。后续还会增加3D与视频部分的实践内容。

9a34b0aeb3bdd130aeb7bad7020859a9.png

9955c5ba5a20d208fe34349bae54001d.png

案例图

下面简单了解一下课程各部分的大体内容:

(1) 全卷积图像生成GAN,讲解DCGAN的原理与结果,约17分钟,本小节内容可以免费收听。

9e0d7d9be4f8ff7961bd8508bc72190d.png

(2) 全卷积图像生成GAN实战,讲解DCGAN的实战,包括模型解读与训练,约50分钟,本小节内容可以免费收听。

478d99ecaeb1d2d7af84ccddd0ab6e89.png

2a4d7468cc50fce30d67808ee55b4b4c.png

9bfcab4574e93acaafe3044fa18c9837.png

(3) 条件GAN原理,讲解有监督,无监督,半监督条件GAN,约30分钟。

67c3453d199285a54b4a87d2432fd91c.png

f0e9f64c8011adf1de0065b275b004cf.png

(4) 多尺度GAN,包括金字塔GAN,渐进式生成GAN,约25分钟。

8a660c00ed78b3501596bc839061665b.png

f2c50e3e49fb4bdd8a629725a0897b42.png

(5) StyleGAN原理解读,包括StyleGAN v1与StyleGAN v2的原理详细解读,约100分钟。

1342c897bbd02ee599f07c1d26a62ffc.png

67ed59086c5bff4e59d244a03a7b7737.png

(6) 基于Pytorch的StyleGAN项目实战,约60分钟。

4d2e4b6986cf1c2cdbb19bb6d7b90492.png

27b473cb3a6096b5d1115c44389c9d4b.png

(7) 数据增强与仿真GAN,讲解典型的数据增强与仿真GAN模型,约15分钟。

627dbf9c57bbde687145415398d81073.png

900b2cfa3b90e2d501ce0ee558101e3f.png

以上就是当前更新的内容,后续还将更新3D图片,视频生成GAN等内容,请大家及时关注。

本课程适合人群:

(1) 所有学习人工智能/深度学习算法,并有志于从事该领域的人员。

(2) 从事GAN相关研究与应用落地的技术人员。

(3) 学习与从事计算机视觉领域的技术人员。

学习完本课程你将掌握:

(1) 掌握基于GAN的图像生成经典算法与实战。

(2) 熟悉Pytorch项目实践。

课程讲师介绍

ab70b97e2c496b5261462f4f4a060728.png

龙鹏,笔名言有三,技术社区《有三AI》创始人。先后就读于华中科技大学(2008-2012),中国科学院半导体研究所神经网络实验室(2012-2015),先后就职于奇虎360人工智能研究院(2015.7-2017.5),陌陌科技深度学习实验室(2017.5-2019.3),深度学习算法专家,阿里云MVP,华为云MVP。

拥有超过7年的计算机视觉从业经验,拥有丰富的传统图像算法和深度学习计算机视觉项目经验,著有书籍《深度学习之图像识别:核心技术与案例实战》(机械工业出版社2019.4),《深度学习之模型设计:核心算法与案例实践》(电子工业出版社2020.6),《深度学习之人脸图像处理:核心算法与案例实战》(机械工业出版社2020.7),《深度学习之摄影图像处理:核心算法与案例精粹》(人民邮电出版社2021.4),拥有10余项发明技术专利与学术论文。

擅长领域: Caffe,Tensorflow,Pytorch等主 流深度学习平台。神经网络与深度学习理论,深度学习模型设计与优化,计算机视觉的基础领域,AI美学,2D与3D人脸算法,生成对抗网络GAN等领域。

如何获取本课程

订阅本课程的方法有两个:

其一:参加有三AI-CV秋季划GAN组,可以获得完整课程。有三AI-CV秋季划介绍与订阅方式如下:【CV秋季划】生成对抗网络GAN有哪些研究和应用,如何循序渐进地学习好?

0a1fe43d501355a294bd0bbb35811afa.png

其二:单独订阅《深度学习之图像生成GAN-理论实践篇》专栏课程,订阅链接如下:

484bc7cb999b3a6708a146ff39cf4d30.png

课程特别说明:

(1) 课程设有多个试看章节,可供学员试看

(2) 课程实战项目部分会提供相应实战代码及数据集(关于课程代码及数据获取,请学员查阅课程目录中链接)

e5299a1ea6165c7f4ba3e15f0bb88bea.png

课程试看章节及提供数据

(3) 课程设有技术交流群,供学员技术交流

83044c786c819ca217139cfab3c18579.png

课程交流群

如果你对本课程感兴趣,需要咨询该课程,可以添加“有三AI小助手”微信号,微信号为坨坨瑜,微信二维码如下:

a9ed0958ea284cf21f8a87bd3a5351e0.png

微信小助手: 坨坨瑜

同时欢迎在深度学习领域有沉淀积累的同学加入有三AI生态,让更多人受益!

bce6406e3e25d211163a13018b6a82c3.png

ff855ba4fc68f7ce9e3cd3f9e0b3467d.png

f5683d46d06573c337cdc93d2bda80b3.png

往期相关

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

言有三

三人行必有AI

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值