【本周特惠课程】基于GAN的图像增强理论与实践(涵盖图像降噪、色调映射、去模糊、超分辨、修复等方向)...

有三AI提供了一套完整的计算机视觉课程,涵盖从基础到高级的多个层次。本周特惠课程专注于深度学习中的图像增强GAN,包括图像降噪、色调映射、去模糊、超分辨和修复等内容,由资深技术专家言有三授课,并包含多个实战项目。课程旨在帮助学员掌握基于GAN的图像处理技术,并提供了相应的交流群和订阅选项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

f1445d39a5e6612e45768d02546b41cf.jpeg

前言

欢迎大家关注有三AI的视频课程系列,我们的视频课程系列共分为5层境界,内容和学习路线图如下:

第1层:掌握学习算法必要的预备知识,包括Python编程,深度学习基础,数据使用,框架使用。

第2层:掌握CV算法最底层的能力,包括模型设计基础,图像分类,模型分析。

第3层:掌握CV算法最核心的方向,包括图像分割,目标检测,图像生成,目标跟踪。

第4层:掌握CV算法最核心的应用,包括人脸图像,图像质量,视频分析,图像编辑。

第5层:掌握算法落地的关键技术,包括模型优化,模型部署。

8eaf223ffb24bfa7c0cd1af0b1c79835.jpeg

其中部分课程的主体内容已经更新完毕,比如数据使用/模型分析/图像分类/图像分割/目标检测/图像生成/图像翻译/图像增强/视频分类/模型部署/模型优化/人脸图像检测与识别/人脸属性编辑;部分课程正在重制更新中,比如人脸三维重建;部分课程正在计划上线中,比如通用图像编辑/视觉Transformer/强化学习/半监督与无监督,请大家及时关注!

最新的完整介绍如下:【总结】最系统化的CV内容,有三AI所有免费与付费的计算机视觉课程汇总(2022年12月)

df5b928fde7b370b1db39c7c5af1f673.png

2023年开始,每周都会有一门课程在当周有9折特惠,本周特惠课程是《深度学习之图像增强GAN:理论实践篇》,目标是帮助大家掌握基于生成对抗网络在图像质量提升中的经典工作。

为什么要学习这门课

随着GAN相关技术的发展逐渐成熟,它在图像质量提升等底层任务中得到了广泛的应用,极大地促进了图像降噪、图像色调映射、图像去模糊、图像超分辨、图像修复等领域的算法进步,如下图分别展示了比较典型的图像修复、图像超分辨,图像色调映射应用实际产品的效果图。

23d2671ca1f8197012bf869b6901ab85.gif

图像修复应用

711149a10c11667e3e31716c71c8850b.jpeg

图像超分辨应用

df362d15bcec5586a9b8198e7c43a2fa.jpeg

图像色调映射应用

为了帮助大家系统性地学习基于GAN的图像增强内容,我们推出了《深度学习之图像增强GAN:理论与实践》系列课程,目前已完成超过了8个小时内容(还在更新中)

课程的第一阶段内容已经更新完毕,本课程结合实际项目,将所学理论应用于实践。

196a66e1b357a4d875dea9cf291bbd8d.png

深度学习之图像增强GAN课程

课程内容介绍

本课程内容将包括图像增强GAN经典算法理论与实践,目前一期已经基本更新完毕,超过8个小时,涵盖了图像降噪GAN,图像色调映射GAN、图像去模糊GAN、图像超分辨GAN,图像修复GAN等领域,既有足够的宽度,也具备有足够的深度。我们会非常详细地讲解算法中的细节,帮助彻底消化算法原理;

下图是已有课程的大纲脑图:

d7afcf277f657d3ea3f17e01cf0fc2a7.png

下面简单了解一下各部分的内容:

(1) 图像降噪,包括图像降噪的基础,基本的图像降噪GAN模型以及进阶的图像降噪GAN模型,约65分钟。

4878979b8c2061ef6c260e7e8e495f18.png

b7a59765d5c496537e6087e72506f493.png

(2) 图像色调映射,包括图像色调映射的基础,基本的图像色调映射GAN模型以及进阶的图像色调映射GAN模型,约55分钟。

e8ad1c4cd5daec01ba4308bd331b3ed4.png

6da85f4ff5d8b2c24cc16c53320c659f.png

(3)  图像超分辨,包括图像超分辨的基础,基本的图像超分辨GAN模型以及进阶的图像超分辨GAN模型,约75分钟。

652067c4946d217609cfc7ae2afcae1d.png

491f0b7005519b6f03f7eba07a59bf46.png

(4)  图像去模糊,包括图像去模糊的基础,基本的图像去模糊GAN模型以及进阶的图像去模糊GAN模型,约40分钟。

983a09fb03c503a976e30fc6aeb2c672.png

9b3e1aa7d854541f9a5cba69f9695268.png

(5)  图像修复,包括图像修复的基础,基本的图像修复GAN模型以及进阶的图像修复GAN模型,约55分钟。

1ae2a9e1e656115b04c1cb63fb003583.png

a44f26f1ccb2501e795e7ec64652ad40.png

(6) DANet图像降噪实战,包括原理解读,数据读取,模型搭建,模型训练,模型测试,时长约70分钟。

48b6d29a16b5f257bf48b351137f968c.png

c30af70c8d074f85a5e91591e49b5fe8.png

(7) EnlightenGAN图像色调映射实战,包括原理解读,数据读取,模型搭建,模型训练,模型测试,时长约90分钟。

ac6e8bf994085e740558d248d2be6f5a.png

d4dc347145ad7e2df5803140d103ab7c.png

(8) SRGAN图像超分辨实战,包括原理解读,数据读取,模型搭建,模型训练,模型测试,时长约55分钟。

2473d106dc5d8d253cbcc5befa35c72f.png

3b0d933c80b5ca55ebc9232614766a8e.png

以下是一些实战项目的效果图:

2d62bb0a82d9b40d1974a6aa0042fd9c.gif

7540a275466b4477363383e09e6f3b0e.png

baba18e60370854a778a77ee4fbc3cbd.png

本课程讲师为言有三,讲师简介如下:

328dab37129a162caad78f14d6e116a8.png

龙鹏,笔名言有三,技术社区《有三AI》创始人。先后就读于华中科技大学(2008-2012),中国科学院半导体研究所神经网络实验室(2012-2015),先后就职于奇虎360人工智能研究院(2015.7-2017.5),陌陌科技深度学习实验室(2017.5-2019.3),深度学习算法专家,阿里云MVP,华为云MVP。

拥有超过7年的计算机视觉从业经验,拥有丰富的传统图像算法和深度学习计算机视觉项目经验,著有书籍《深度学习之图像识别:核心技术与案例实战》(机械工业出版社2019.4),《深度学习之模型设计:核心算法与案例实践》(电子工业出版社2020.6),《深度学习之人脸图像处理:核心算法与案例实战》(机械工业出版社2020.7),《深度学习之摄影图像处理:核心算法与案例精粹》(人民邮电出版社2021.4),拥有10余项发明技术专利与学术论文。

擅长领域:Caffe,Tensorflow,Pytorch等主流深度学习平台。神经网络与深度学习理论,深度学习模型设计与优化,计算机视觉的基础领域,AI美学,2D与3D人脸算法,生成对抗网络GAN等领域。

如何获取课程

订阅本课程的方法有两个:

其一:订阅《深度学习之图像增强GAN》专栏,本专栏暂时定价为299元,随着后续内容增加价格还会继续增加,感兴趣的请提前订阅,链接如下:

b0e485fbb1692a78379def665571fa16.jpeg

已有的课程目录如下:

5b89d93a3b41b21402dc0f0de72a32d8.jpeg

其二:参加有三AI-CV秋季划GAN组或者有三AI-CV秋季划图像质量组,GAN组可以获得所有GAN相关的课程,图像质量组可以获得所有图像质量评估与提升相关的课程:

【CV秋季划】生成对抗网络GAN有哪些研究和应用,如何循序渐进地学习好(2022年言有三一对一辅导)?

【CV秋季划】图像质量提升与编辑有哪些研究和应用,如何循序渐进地学习好?

4897a4f2fb0b156a32aea290b4f89843.jpeg

课程设有交流群,大家在订阅课程后可以添加小助手入群,同时欢迎在深度学习领域有沉淀积累的同学加入有三AI生态,让更多人受益!

b225e5890b17d950cee5de35582b2c42.jpeg

3b03db824975e7a9c1a5956b4ca790cd.png

91c64c4eb67c5dcbe094f50bbfced598.png

往期相关

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

言有三

三人行必有AI

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值