Hadoop调试问题

在Windows上调试mapreduce程序,一个很简单的wordcount程序竟然收到了阻碍,果然大数据应用不适合在Windows上玩,但通过查资料总算解决了。
先是报错:Exception in thread "main" java.io.IOException: (null) entry in command string: null chmod 0700,看着像权限问题,发现在磁盘根目录下自动创建了一个E:\tmp\hadoop-Robin\mapred\staging文件夹 ,更改权限未果,参照第一篇博文配置完Hadoop环境变量后,又报错permission denied,这回是正经八百的权限问题了,参照第二篇博文将输入文件直接写死就可以了(本来是读取args里面配置的路径)。
估计还有更好的解决方式,待探究。

调试用的源码:


import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount {

    public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {

        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();

        public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
            StringTokenizer itr = new StringTokenizer(value.toString());
            while (itr.hasMoreTokens()) {
                word.set(itr.nextToken());
                context.write(word, one);
            }
        }
    }

    public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
        private IntWritable result = new IntWritable();

        public void reduce(Text key, Iterable<IntWritable> values, Context context)
                throws IOException, InterruptedException {
            int sum = 0;
            for (IntWritable val : values) {
                sum += val.get();
            }
            result.set(sum);
            context.write(key, result);
        }
    }

    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
//      if (otherArgs.length < 2) {
//          System.err.println("Usage: wordcount <in> [<in>...] <out>");
//          System.exit(2);
//      }
        Job job = new Job(conf, "word count");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
//      for (int i = 0; i < otherArgs.length - 1; ++i) {
//          FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
//      }
        FileInputFormat.setInputPaths(job,new Path("E:\\hadoop\\codeOnGitHub-hadooptraining\\hadoop\\src\\main\\resources\\input\\input_1.txt"));

        Path outputPath = new Path(otherArgs[1]);

        outputPath.getFileSystem(conf).delete(outputPath);

//      FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1]));
        FileOutputFormat.setOutputPath(job, new Path("E:\\hadoop\\codeOnGitHub-hadooptraining\\hadoop\\src\\main\\resources\\output"));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

主要参考以下两篇博文:
http://blog.csdn.net/u014728303/article/details/59058248
http://blog.csdn.net/u011478909/article/details/52164424

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值