在Windows上调试mapreduce程序,一个很简单的wordcount程序竟然收到了阻碍,果然大数据应用不适合在Windows上玩,但通过查资料总算解决了。
先是报错:Exception in thread "main" java.io.IOException: (null) entry in command string: null chmod 0700
,看着像权限问题,发现在磁盘根目录下自动创建了一个E:\tmp\hadoop-Robin\mapred\staging文件夹 ,更改权限未果,参照第一篇博文配置完Hadoop环境变量后,又报错permission denied,这回是正经八百的权限问题了,参照第二篇博文将输入文件直接写死就可以了(本来是读取args里面配置的路径)。
估计还有更好的解决方式,待探究。
调试用的源码:
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
// if (otherArgs.length < 2) {
// System.err.println("Usage: wordcount <in> [<in>...] <out>");
// System.exit(2);
// }
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// for (int i = 0; i < otherArgs.length - 1; ++i) {
// FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
// }
FileInputFormat.setInputPaths(job,new Path("E:\\hadoop\\codeOnGitHub-hadooptraining\\hadoop\\src\\main\\resources\\input\\input_1.txt"));
Path outputPath = new Path(otherArgs[1]);
outputPath.getFileSystem(conf).delete(outputPath);
// FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1]));
FileOutputFormat.setOutputPath(job, new Path("E:\\hadoop\\codeOnGitHub-hadooptraining\\hadoop\\src\\main\\resources\\output"));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
主要参考以下两篇博文:
http://blog.csdn.net/u014728303/article/details/59058248
http://blog.csdn.net/u011478909/article/details/52164424