归并排序是一种高级排序算法,适用于外部排序,时间复杂度为O(nlogn),但是由于必须引入辅助数组,空间复杂度为O(n)
public class MergeSort {
public static void main(String[] args) {
int[] arr = new int[9999999];
for (int i = 0; i < arr.length; i++) {
arr[i] = (int)(Math.random()*arr.length);
}
long start = System.currentTimeMillis();
mergeSort(arr);
long end = System.currentTimeMillis();
System.out.println("归并排序耗时:" + (end - start) + "ms");
}
public static void mergeSort(int[] arr){
int[] tmpArr = new int[arr.length]; //辅助数组
mergeSort(arr, tmpArr, 0, arr.length - 1);
}
private static void mergeSort(int[] arr, int[] tmpArr, int left, int right){
if (left < right){
int center = (left + right) / 2; //第一段数组的末尾元素下标
mergeSort(arr, tmpArr, left, center);
mergeSort(arr, tmpArr, center + 1, right);
merge(arr, tmpArr, left, center, right);
}
}
//归并
private static void merge(int[] arr, int[] tmpArr, int left, int center, int right){
int rightBegin = center + 1; //第二段数组的起始元素下标
int tmpIndex = left; //临时数组对应第一段数组的起始元素下标
int num = right - left + 1; //子数组的长度
while (left <= center && rightBegin <= right){
if (arr[left] <= arr[rightBegin])
tmpArr[tmpIndex++] = arr[left++];
else
tmpArr[tmpIndex++] = arr[rightBegin++];
}
while (left <= center)
tmpArr[tmpIndex++] = arr[left++];
while (rightBegin <= right)
tmpArr[tmpIndex++] = arr[rightBegin++];
//tmpArr传给arr
for (int i = 0; i < num; i++){
//从右往左插入是因为left已经是center,而right没变
arr[right] = tmpArr[right];
--right;
}
}
}