3、深入探索Flex与Bison:语法解析与正则表达式的应用

深入探索Flex与Bison:语法解析与正则表达式的应用

1. 简单句子语法结构与自然语言处理难题

简单句子的语法结构可以表示为:

simple_sentence: subject verb object
      |     subject verb object prep_phrase ;
subject:    NOUN
      |     PRONOUN
      |     ADJECTIVE subject ;
verb:       VERB
      |     ADVERB VERB
      |     verb VERB ;
object:     NOUN
      |     ADJECTIVE object ;
prep_phrase:     PREPOSITION NOUN ;

然而,这种语法结构在处理自然语言时存在局限性,仅适用于自然语言的小部分不切实际的子集。自然语言的语法极其复杂,难以用软件进行编写和处理。为什么我们为计算机发明的语言比我们日常使用的语言简单得多,这仍然是一个有趣且未解决的问题。

2. 编译Flex和Bison程序

在将扫描器和解析器构建成一个可运行的程序之前,需要对扫描器进行一些小的修改。具体来说,不再在第一部分中定义显式的令牌值,而是包含一个Bison为我们创建的头文件,该文件包含令牌编号的定义和 yylval 的定义。同时,删除扫描器第三部分的测试主程序,因为解析器现在将调用扫描器。扫描器的第一部分现在如下所示:


                
Kriging_NSGA3_Topsis克里金预测模型做代理模型多目标遗传3代结合熵权法反求最佳因变量及自变量(Matlab代码实现)内容概要:本文介绍了基于克里金(Kriging)代理模型、多目标遗传算法NSGA-III和TOPSIS决策方法相结合的技术路线,用于反求最优的因变量及对应的自变量组合。该方法首先利用克里金模型对复杂系统进行近似建模,降低计算成本;随后通过NSGA-III算法进行三代多目标优化,获得帕累托前沿解集;最后结合熵权法确定各目标权重,并使用TOPSIS方法从解集中筛选出最接近理想解的最佳方案。整个流程在Matlab平台上实现,适用于工程优化中高耗时仿真模型的替代多目标折衷分析。; 适合人群:具备一定数学建模基础和Matlab编程能力的研究生、科研人员及从事工程优化设计的工程师;熟悉代理模型、遗传算法多属性决策方法的学习者优先。; 使用场景及目标:①解决计算昂贵的多目标优化问题,如结构设计、能源系统参数优化等;②掌握克里金代理模型构建、NSGA-III算法应用及熵权-TOPSIS集成决策的全流程实现;③复现高水平学术论文中的优化方法,提升科研创新能力。; 阅读建议:建议读者结合提供的Matlab代码逐步调试运行,理解每一步的数据流向算法逻辑,重点关注代理模型精度验证、NSGA-III参数设置及熵权法权重计算过程,以实现对整体方法的深入掌握灵活应用
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值