Poj 1018 题解

12 篇文章 0 订阅

这是一道简单的dp题。

首先想想,b/p最大,就是想让b最大,p最小。

状态定义f[i][j]=前i行最小最小值为j的最小价值p,这样用b/p才最大,最后一个个枚举。(自然保证最大)
为什么一个个枚举可以呢 其实联系一下p想想就好了。

对了,还有的就是用c++ 提交

Code:

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int t,n;
struct node
{
  int b[110],p[110];
  int k;
}Syt[110];
int Maxx;
void Input()
{
  Maxx=0;
  scanf("%d",&n);
  for(int i=1;i<=n;i++)
  {
	scanf("%d",&Syt[i].k);
	for(int j=1;j<=Syt[i].k;j++)
	{
	  scanf("%d%d",&Syt[i].b[j],&Syt[i].p[j]);
	  Maxx=max(Maxx,Syt[i].b[j]);
	}
  }
}
int f[110][11000];
double sum;
void Solve()
{
  memset(f,63,sizeof(f));
  for(int i=1;i<=Maxx;i++)
    f[0][i]=0;
  for(int i=1;i<=n;i++)
    for(int j=1;j<=Syt[i].k;j++)
	  for(int k=1;k<=Syt[i].b[j];k++)
	    f[i][k]=min(f[i][k],f[i-1][k]+Syt[i].p[j]);
  sum=0;
  for(int i=1;i<=Maxx;i++)
      sum=max(sum,1.0*i/f[n][i]);
}
void Output()
{
  printf("%.3lf\n",sum);
}
int main()
{
  freopen("a.in","r",stdin);
  freopen("a.out","w",stdout);
  int t;
  scanf("%d",&t);
  while(t--)
  {
    Input();
    Solve();
	Output();
  }
  return 0;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
POJ3635是一道经典的数学题,需要使用一些数学知识和算法进行解决。 题目描述: 给定四个正整数 a、b、p 和 k,求 a^b^p mod k 的值。 解题思路: 首先,我们可以将指数 b^p 写成二进制形式:b^p = c0 * 2^0 + c1 * 2^1 + c2 * 2^2 + ... + ck * 2^k,其中 ci 为二进制数的第 i 位。 然后,我们可以通过快速幂算法来计算 a^(2^i) mod k 的值。具体来说,我们可以用一个变量 x 来存储 a^(2^i) mod k 的值,然后每次将 i 加 1,如果 ci 为 1,则将 x 乘上 a^(2^i) mod k,最后得到 a^b^p mod k 的值。 代码实现: 以下是 Java 的代码实现: import java.util.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger a = sc.nextBigInteger(); BigInteger b = sc.nextBigInteger(); BigInteger p = sc.nextBigInteger(); BigInteger k = sc.nextBigInteger(); BigInteger ans = BigInteger.ONE; for (int i = 0; i < p.bitLength(); i++) { if (b.testBit(i)) { ans = ans.multiply(a.modPow(BigInteger.ONE.shiftLeft(i), k)).mod(k); } } System.out.println(ans); } } 其中,bitLength() 函数用于获取二进制数的位数,testBit() 函数用于判断二进制数的第 i 位是否为 1,modPow() 函数用于计算 a^(2^i) mod k 的值,multiply() 函数用于计算两个 BigInteger 对象的乘积,mod() 函数用于计算模数。 时间复杂度: 快速幂算法的时间复杂度为 O(log b^p),其中 b^p 为指数。由于 b^p 的位数不超过 32,因此时间复杂度为 O(log 32) = O(1)。 总结: POJ3635 是一道经典的数学题,需要使用快速幂算法来求解。在实现时,需要注意 BigInteger 类的使用方法,以及快速幂算法的细节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值