Poj 1170 题解

12 篇文章 0 订阅

本来想用5个数表达一个状态的。

但是先起来麻烦。

结果用5维数组做咯。

离散化了。 还是一次ac

Code:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<map>
using namespace std;
struct node
{
  int p[6];
  int val;
}a[1100]; int ls=0,len=0;
map<int,int>mp; int tail=0;
int b,n;
int pi[6];
void Input()
{
  scanf("%d",&b); int x,y,z;
  for(int i=1;i<=b;i++)
  {
    scanf("%d%d%d",&x,&y,&z);
	if(mp[x]==0)
	  mp[x]=++tail;
	int k=mp[x];
	pi[k]+=y;
	a[++ls].p[k]++;
	a[ls].val=z;
  }
  scanf("%d",&n);
  for(int i=1;i<=n;i++)
  {
    int k;
	scanf("%d",&k); ls++;
	for(int j=1;j<=k;j++)
	{
	  scanf("%d%d",&x,&y);
	  int kk=mp[x]; a[ls].p[kk]+=y;
	}
	scanf("%d",&z);
	a[ls].val=z;
  }
}
int f[6][6][6][6][6];
void Solve()
{
  memset(f,63,sizeof(f));
  f[0][0][0][0][0]=0;
  for(int i1=0;i1<=pi[1];i1++)
  {
    for(int i2=0;i2<=pi[2];i2++)
	{
	  for(int i3=0;i3<=pi[3];i3++)
	  {
	    for(int i4=0;i4<=pi[4];i4++)
		{
		  for(int i5=0;i5<=pi[5];i5++)
		  {
		    for(int i=1;i<=ls;i++)
			{
			  if((i1-a[i].p[1]>=0)&&(i2-a[i].p[2]>=0)&&(i3-a[i].p[3]>=0)
			  &&(i4-a[i].p[4]>=0)&&(i5-a[i].p[5]>=0))
			  {
			    if(f[i1-a[i].p[1]][i2-a[i].p[2]][i3-a[i].p[3]][i4-a[i].p[4]][i5-a[i].p[5]]<=9999999)
				{
				  f[i1][i2][i3][i4][i5]=min(f[i1][i2][i3][i4][i5],
				  f[i1-a[i].p[1]][i2-a[i].p[2]][i3-a[i].p[3]][i4-a[i].p[4]][i5-a[i].p[5]]+a[i].val);
				}
			  }
			}
		  }
		}
	  }
	}
  }
}
void Output()
{
  printf("%d\n",f[pi[1]][pi[2]][pi[3]][pi[4]][pi[5]]);
}
int main()
{
  freopen("a.in","r",stdin);
  freopen("a.out","w",stdout);
  Input();
  Solve();
  Output();
  return 0;
}



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
POJ3635是一道经典的数学题,需要使用一些数学知识和算法进行解决。 题目描述: 给定四个正整数 a、b、p 和 k,求 a^b^p mod k 的值。 解题思路: 首先,我们可以将指数 b^p 写成二进制形式:b^p = c0 * 2^0 + c1 * 2^1 + c2 * 2^2 + ... + ck * 2^k,其中 ci 为二进制数的第 i 位。 然后,我们可以通过快速幂算法来计算 a^(2^i) mod k 的值。具体来说,我们可以用一个变量 x 来存储 a^(2^i) mod k 的值,然后每次将 i 加 1,如果 ci 为 1,则将 x 乘上 a^(2^i) mod k,最后得到 a^b^p mod k 的值。 代码实现: 以下是 Java 的代码实现: import java.util.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger a = sc.nextBigInteger(); BigInteger b = sc.nextBigInteger(); BigInteger p = sc.nextBigInteger(); BigInteger k = sc.nextBigInteger(); BigInteger ans = BigInteger.ONE; for (int i = 0; i < p.bitLength(); i++) { if (b.testBit(i)) { ans = ans.multiply(a.modPow(BigInteger.ONE.shiftLeft(i), k)).mod(k); } } System.out.println(ans); } } 其中,bitLength() 函数用于获取二进制数的位数,testBit() 函数用于判断二进制数的第 i 位是否为 1,modPow() 函数用于计算 a^(2^i) mod k 的值,multiply() 函数用于计算两个 BigInteger 对象的乘积,mod() 函数用于计算模数。 时间复杂度: 快速幂算法的时间复杂度为 O(log b^p),其中 b^p 为指数。由于 b^p 的位数不超过 32,因此时间复杂度为 O(log 32) = O(1)。 总结: POJ3635 是一道经典的数学题,需要使用快速幂算法来求解。在实现时,需要注意 BigInteger 类的使用方法,以及快速幂算法的细节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值