书生浦语
文章平均质量分 87
while(awake) code
这个作者很懒,什么都没留下…
展开
-
玩转HF/魔搭/魔乐社区
下载依赖下载指定文件。原创 2024-10-24 14:26:31 · 860 阅读 · 0 评论 -
InternLM Git 基础知识
提交一份自我介绍。创建并提交一个项目。原创 2024-07-29 11:19:19 · 562 阅读 · 0 评论 -
探索 InternLM 模型能力边界
Bad Case1.模型服务来源compassarea输入我刚才问了什么问题模型AInternLM2.5-20B-Chat (上海AILab书生·浦语)模型BQwen2-72B-Instruct (阿里通义千问)模型A输出对不起,由于我无法访问之前的交互历史记录,我无法回答您刚才问的具体问题是什么。不过,如果您有任何其他问题,我会很乐意尝试回答。模型B输出您刚才问的问题是:“如果今天是星期一,那么后天是什么时候?”其他补充2.原创 2024-09-17 20:07:54 · 837 阅读 · 0 评论 -
InternLM Python 基础知识
【代码】InternLM Python 基础知识。原创 2024-07-16 21:41:03 · 181 阅读 · 0 评论 -
InternLM Linux 基础知识
完成SSH连接与端口映射并运行hello_world.py创建并运行test.sh文件使用 VSCODE 远程连接开发机并创建一个conda环境原创 2024-07-29 10:21:17 · 171 阅读 · 0 评论 -
8G 显存玩转书生大模型 Demo
使用 Cli Demo 完成 InternLM2-Chat-1.8B 模型的部署,并生成 300 字小故事,记录复现过程并截图。使用 LMDeploy 完成 InternLM-XComposer2-VL-1.8B 的部署,并完成一次图文理解对话,记录复现过程并截图。使用 LMDeploy 完成 InternVL2-2B 的部署,并完成一次图文理解对话,记录复现过程并截图。原创 2024-08-02 13:01:57 · 180 阅读 · 0 评论 -
浦语提示词工程实践
Prompt是一种用于指导以大语言模型为代表的生成式人工智能生成内容(文本、图像、视频等)的输入方式。它通常是一个简短的文本或问题,用于描述任务和要求。Prompt可以包含一些特定的关键词或短语,用于引导模型生成符合特定主题或风格的内容。例如,如果我们要生成一篇关于“人工智能”的文章,我们可以使用“人工智能”作为Prompt,让模型生成一篇关于人工智能的介绍、应用、发展等方面的文章。Prompt还可以包含一些特定的指令或要求,用于控制生成文本的语气、风格、长度等方面。原创 2024-08-29 20:59:29 · 115 阅读 · 0 评论 -
InternLM + LlamaIndex RAG 实践
RAG之前RAG之后。原创 2024-09-02 21:49:29 · 172 阅读 · 0 评论 -
XTuner 微调个人小助手认知
1。原创 2024-09-08 00:37:31 · 131 阅读 · 0 评论 -
书生大模型全链路开源开放体系笔记
可以提问文档中100万token中任何一个部分的问题,也有弊端就是不能联系上下文。原创 2024-09-08 10:30:40 · 173 阅读 · 0 评论 -
OpenCompass 评测 InternLM-1.8B 实践
1。原创 2024-09-08 13:33:51 · 120 阅读 · 0 评论 -
Lagent 自定义你的 Agent 智能体
在本节中,我们将带大家基于 Lagent 自定义自己的智能体。Lagent 中关于工具部分的介绍文档位于 https://lagent.readthedocs.io/zh-cn/latest/tutorials/action.html。继承BaseAction类实现简单工具的run方法;或者实现工具包内每个子工具的功能简单工具的run方法可选被tool_api装饰;工具包内每个子工具的功能都需要被tool_api装饰下面我们将实现一个调用 MagicMaker API 以完成文生图的功能。原创 2024-09-09 21:53:03 · 162 阅读 · 0 评论 -
LMDeploy 量化部署进阶实践
打开,进入如下界面并按箭头指示顺序点击。点选开发机,自拟一个开发机名称,选择镜像。我们要运行参数量为7B的InternLM2.5,由查询InternLM2.5-7b-chat的config.json文件可知,bfloat16所以我们需要大于14GB的显存,选择(24GB显存容量),后选择,等状态栏变成运行中,点击,我们即可开始部署。在终端中,让我们输入以下指令,来创建一个名为lmdeploy的conda环境,python版本为3.10,创建成功后激活环境并安装0.5.3版本的lmdeploy及相关包。原创 2024-09-11 20:16:14 · 1007 阅读 · 0 评论 -
InternVL 多模态模型部署微调实践
InternVL 是一种用于多模态任务的深度学习模型,旨在处理和理解多种类型的数据输入,如图像和文本。它结合了视觉和语言模型,能够执行复杂的跨模态任务,比如图文匹配、图像描述生成等。通过整合视觉特征和语言信息,InternVL 可以在多模态领域取得更好的表现。原创 2024-09-15 08:29:38 · 858 阅读 · 0 评论 -
茴香豆:企业级知识库问答工具
是由书生·浦语团队开发的一款开源、专门针对国内企业级使用场景设计并优化的知识问答工具。在基础 RAG 课程中我们了解到,RAG 可以有效的帮助提高 LLM 知识检索的相关性、实时性,同时避免 LLM 训练带来的巨大成本。在实际的生产和生活环境需求,对 RAG 系统的开发、部署和调优的挑战更大,如需要解决群应答、能够无关问题拒答、多渠道应答、更高的安全性挑战。因此,根据大量国内用户的实际需求,总结出了的茴香豆知识问答助手架构,帮助企业级用户可以快速上手安装部署。原创 2024-09-15 20:31:58 · 1199 阅读 · 0 评论 -
MindSearch 快速部署
随着硅基流动提供了免费的 InternLM2.5-7B-Chat 服务(免费的 InternLM2.5-7B-Chat 真的很香),MindSearch 的部署与使用也就迎来了纯 CPU 版本,进一步降低了部署门槛。首先,我们打开 https://account.siliconflow.cn/login 来注册硅基流动的账号(如果注册过,则直接登录即可)。由于硅基流动 API 的相关配置已经集成在了 MindSearch 中,所以我们可以直接执行下面的代码来启动 MindSearch 的后端。原创 2024-09-16 17:23:45 · 1065 阅读 · 0 评论