分析:这道题的关键点是要知道一个关于位运算的式子
a+b=(a|b)−(a
&
b)
这样的话,可以有以下的推导:
∑ni=1a[i]=sum
,那么
c[i]=∑Nj=1(a[i]+a[j])−b[i]
,然后推出
b[i]+c[i]=N∗a[i]+sum
,可以计算出
a[i]
还有一点需要注意,就是验证一下
a[i]
的正确性。这里也是要小技巧的。将整个式子拆成二进制的形式进行与和或的操作,这样能把长度为N的和式在
O(1)
的时间内求出来。
/*****************************************************/
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <map>
#include <set>
#include <ctime>
#include <stack>
#include <queue>
#include <cmath>
#include <string>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define offcin ios::sync_with_stdio(false)
#define sigma_size 26
#define lson l,m,v<<1
#define rson m+1,r,v<<1|1
#define slch v<<1
#define srch v<<1|1
#define sgetmid int m = (l+r)>>1
#define ll long long
#define ull unsigned long long
#define lowbit(x) (x&-x)
#define bits(a) __builtin_popcount(a)
const int INF = 0x3f3f3f3f;
const ll INFF = 1e18;
const double pi = acos(-1.0);
const double inf = 1e18;
const double eps = 1e-9;
const ll mod = 1e9+7;
const int maxmat = 10;
const ull BASE = 133333331;
/*****************************************************/
inline void RI(int &x) {
char c;
while((c=getchar())<'0' || c>'9');
x=c-'0';
while((c=getchar())>='0' && c<='9') x=(x<<3)+(x<<1)+c-'0';
}
/*****************************************************/
const int maxn = 2e5 + 5;
ll a[maxn], b[maxn], c[maxn];
int cnt[65];
int main(int argc, char const *argv[]) {
int N; cin>>N;
ll sum = 0;
for (int i = 1; i <= N; i ++) cin>>b[i], sum += b[i];
for (int i = 1; i <= N; i ++) cin>>c[i], sum += c[i];
if (sum % (2 * N)) {puts("-1"); return 0;}
sum = sum / N / 2;
for (int i = 1; i <= N; i ++) {
if ((b[i] + c[i] - sum) % N) {puts("-1"); return 0;}
a[i] = (b[i] + c[i] - sum) / N;
}
for (int i = 1; i <= N; i ++)
for (int j = 0; j < 62; j ++)
cnt[j] += a[i] >> j & 1;
for (int i = 1; i <= N; i ++) {
ll bb = 0, cc = 0;
for (int j = 0; j < 62; j ++)
if (a[i] >> j & 1) bb += cnt[j] * (1ll << j), cc += N * (1ll << j);
else cc += cnt[j] * (1ll << j);
if (bb != b[i] || cc != c[i]) {puts("-1"); return 0;}
}
for (int i = 1; i <= N; i ++) cout<<a[i]<<" ";
return 0;
}