poj 2406 Power Strings

题目链接

分析:
这道题正解是KMP计算失配指针。
http://www.cnblogs.com/zhanzhao/p/4761477.html推荐一个解释比较清晰的网址
巧妙运用了next数组的意义及计算next的方法,能够证明最小的周期是 len/(lenf[len]) 如果整除,否则就是1。

/*****************************************************/
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <map>
#include <set>
#include <ctime>
#include <stack>
#include <queue>
#include <cmath>
#include <string>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>

using namespace std;

#define   offcin        ios::sync_with_stdio(false)
#define   sigma_size    26
#define   lson          l,m,v<<1
#define   rson          m+1,r,v<<1|1
#define   slch          v<<1
#define   srch          v<<1|1
#define   sgetmid       int m = (l+r)>>1
#define   ll            long long
#define   ull           unsigned long long
#define   lowbit(x)     (x&-x)
#define   bits(a)       __builtin_popcount(a)

const int    INF    = 0x3f3f3f3f;
const ll     INFF   = 1e18;
const double pi     = acos(-1.0);
const double inf    = 1e18;
const double eps    = 1e-9;
const ll     mod    = 1e9+7;
const int    maxmat = 10;
const ull    BASE   = 133333331;

/*****************************************************/
inline void RI(int &x) {
      char c;
      while((c=getchar())<'0' || c>'9');
      x=c-'0';
      while((c=getchar())>='0' && c<='9') x=(x<<3)+(x<<1)+c-'0';
}
/*****************************************************/

const int maxn = 1e6 + 5;

char tmp[maxn];
int f[maxn];

void getFail(char *P, int *f) {
    int m = strlen(P);
    f[0] = f[1] = 0;
    for (int i = 1; i < m; i ++) {
        int j = f[i];
        while (j && P[i] != P[j]) j = f[j];
        f[i + 1] = P[i] == P[j] ? j + 1 : 0;
    }
}

int main(int argc, char const *argv[]) {
    while (~scanf("%s", tmp) && tmp[0] != '.') {
        int len = strlen(tmp);
        getFail(tmp, f);
        if (!(len % (len - f[len]))) printf("%d\n", len / (len - f[len]));
        else puts("1");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值