题目:http://oj.leetcode.com/problems/gas-station/
直观的想法就是枚举每个index,判断从该index开始是否能完成旅行,时间复杂度为O(n平方),代码如下:
public class Solution {
public int canCompleteCircuit(int[] gas, int[] cost) {
for(int i=0;i<gas.length;i++){
int remain=0;
int count=0;
for(int j=i;count<gas.length;j=(j+1)%gas.length){
if(remain+gas[j]<cost[j])
break;
else{
remain=remain+gas[j]-cost[j];
}
count++;
}
if(count==gas.length){
return i;
}
}
return -1;
}
}
结果必然是大数据超时了,于是根据超时case,想了一个O(n)的算法,不过感觉有点投机取巧,说服力不强,代码如下:
public class Solution{
public int canCompleteCircuit(int[] gas, int[] cost) {
int[] surplus = new int[gas.length];
int total = 0;
int min = Integer.MAX_VALUE;
for (int i = 0; i < gas.length; i++) {
surplus[i] = gas[i] - cost[i];
total += surplus[i];
if (total < min) {
min = total;
}
}
if (total < 0)
return -1;
if (min >= 0)
return 0;
for (int i = surplus.length - 1; i >= 0; i--) {
min += surplus[i];
if (min >= 0) {
return i;
}
}
return -1;
}
}
后面CSDN上看到了一种解法,感觉挺好的,转载过来http://blog.csdn.net/fytain/article/details/12191103
public int canCompleteCircuit(int[] gas, int[] cost) {
if (gas == null) {
return -1;
}
int count = gas.length;
int n = 0;
int gasInCar = 0;
int begin = 0;
int end = 0;
int i = 0;
while (n < count - 1) {
gasInCar += gas[i] - cost[i];
if (gasInCar >=0) {//forward
end++;
i=end;
} else {
begin--;
if (begin < 0) {
begin = count - 1;
}
i = begin;
}
n++;
}
gasInCar += gas[i] - cost[i];
if (gasInCar >= 0) {
return begin;
} else {
return -1;
}
}