一步一步学会给Fritzing添加元器件-丰富你的器件库

文章介绍了如何在Fritzing中获取和管理元器件文件,包括从GitHub和官方论坛获取fzb/fzbz文件,单个或批量导入,特别是通过bin文件和拖放操作的批量加入技巧。此外,还提及了制作自定义器件的资源链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


文章出处: https://blog.csdn.net/haigear/article/details/129315452

1、获取元器件文件

你可以选择从下面两个地方来获取比较便利。
https://github.com/fritzing/fritzing-parts/
https://forum.fritzing.org/c/parts-submit/23/l/latest
Fritzing的文件后缀为fzb或者fzbz,请注意别把fzz文件也当做元件了,导入会失败的。
我们看看,官方论坛上的大家分享出来的元件,是不是琳琅满目啊,是不是你也有一种冲动要分享点啥呢?

在这里插入图片描述

2、单个添加元器件

1、在元件库里右击点击导入
2、找到要添加的文件,直接双击导入,就可以在MINE里面找到它了
注意,通过这种方式添加的元器件,在关闭软件的时候,系统会提示是否保存在My parts里面,一定记得点保存save,否则下一次进来你又要进行重复的劳动(虽然劳动光荣,但不建议这么干)。
在这里插入图片描述

3、批量加入

一个个加入,对于一两个还是可以的,如果是很多元器件,那就哭笑不得了。但Fritzing根本没有提供这个功能,肿么办呢?
经过我反复测试,只有两种方法:

(1)、通过别人发布的bin文件加载

这个方式其实主动权不在你的手里,而在那个分享bin文件的人的手里,所以呢,这种方式要靠你精心搜集到别人整理好了的bin文件。所以,所以,所以,这个考验人品。

(2)、终极大招(拖)

看到上面的一个拖字,我想你应该明白了,如果还是不明白说明你没有把握“晕倒死”windows的操作精髓,通过拖放操作有很多时候可以完成你意想不到的快捷与方便。我们来看看操作效果:
请添加图片描述
上面的演示,我通过拖放给我的元件库My Parts添加了三个元件,是不是非常的容易,非常的nice!这个终极大招对于在元器件上面有搜集欲(实际是一种贪欲,搜集这么多元器件你用得上吗?这让我记起当年很多人在网上下很多的英语学习资料,结果,结果就没有了结果了一样)

除了我说的两种方法没有别的方法了,不要详细说拷贝到某个目录就可以获得批量导入的效果,这个在fritzing0.9.10不行了。我的方法是全网唯一的可行的快捷的方法。

4、制作自己器件

大家可以参看这里,到时候我们专门写一篇博客详细介绍,这里我就不继续这个话题了。提供两个教程地址。
https://fritzing.org/learning/tutorials/creating-custom-parts/
https://learn.sparkfun.com/tutorials/make-your-own-fritzing-parts/all
https://www.arduino.cn/thread-95434-1-1.html

码字不易,转载一定注明出处:https://blog.csdn.net/haigear/article/details/129315452

### 关于 Deep Seek 和抖音 API 的集成 Deep Seek 是一种强大的大型语言模型,能够用于多种自然语言处理任务。然而,Deep Seek 并未提供专门针对抖音的官方 API 集成工具或数据处理方案[^1]。如果希望将 Deep Seek 应用于抖音相关的场景,则需要开发者自行设计解决方案。 以下是实现这一目标的主要思路: #### 1. **获取抖音开放的数据** 抖音提供了其自身的开发平台和 API 接口,允许开发者访问部分公开数据(如视频评论、点赞数等)。可以通过申请抖音开发者账号并获得相应的 API Key 来接入这些资源[^2]。需要注意的是,抖音对于第三方应用的权限有严格控制,具体可使用的功能需参照抖音开发者文档。 #### 2. **利用 Deep Seek 处理数据** 一旦获得了来自抖音的数据流,可以将其传递至本地部署的 Deep Seek 模型中进行分析或生成内容。例如: - 对用户的评论进行情感分析。 - 基于历史观看记录推荐个性化内容。 - 自动生成与热门话题匹配的文字描述或标题。 为了完成上述操作,建议按照以下方式设置环境: - 在服务器上安装支持 GPU 加速的 Python 环境。 - 下载预训练好的 DeepSeek-Large 或其他变体版本。 - 编写自定义脚本以加载模型实例并通过 RESTful API 提供服务端点。 下面是一个简单的 Flask Web Service 实现例子,展示如何创建可供外部程序调用的服务接口: ```python from flask import Flask, request, jsonify import torch from transformers import AutoTokenizer, AutoModelForCausalLM app = Flask(__name__) tokenizer = AutoTokenizer.from_pretrained("deepseek/large") model = AutoModelForCausalLM.from_pretrained("deepseek/large") @app.route('/generate', methods=['POST']) def generate_text(): input_data = request.json['input'] inputs = tokenizer(input_data, return_tensors="pt").to('cuda') outputs = model.generate(**inputs, max_length=50) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return jsonify({"output": result}) if __name__ == '__main__': app.run(host='0.0.0.0', port=8080) ``` 此代码片段展示了如何基于 PyTorch 构建一个基本的应用层架构[^3]。实际项目中还需要考虑更多的工程细节比如错误捕获机制以及性能优化策略等等。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

河西石头

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值