配置环境简洁版,以防原文丢失,咱这里直接整理复制一下。
尊重他人成果,本文是转载转载转载
原文链接:https://blog.csdn.net/qq_43779149/article/details/123251209
目录
10. 下载PyCharm Community Edition
1. 查看显卡信息
操作:开始 —— 右键 —— 设备管理器 —— 显示适配器。
-
2. 查看cuda版本
操作:右下角NVIDIA —— 右键 —— NVIDIA控制面板 —— 系统信息 —— 组件。
-
3. 安装cuda
去CUDA官网下载cuda10.2版本。(根据自己实际选择版本)
https://developer.nvidia.com/cuda-downloads
下载后双击exe文件,更改目录,解压。
解压完成后会自动进入安装流程。
按照安装提示默认安装即可。
安装中。
检查是否安装成功。
nvcc -V
成功嘞!
-
4. 安装cudnn
去CUDNN官网下载cuda10.2版本对应的cudnn。(根据自己实际选择版本)
https://developer.nvidia.com/cudnn-downloads
下载之后,解压缩,将CUDNN压缩包里面的bin、include、lib文件直接复制到CUDA的安装目录下(C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2)。
这里如果遇到管理员权限问题。
在”为所有当前项目执行此操作“前点击对号再点击继续。
-
5. 配置cuda环境变量
系统变量已添加
环境变量的PATH里添加bin和libnvvp
-
6. 安装pytorch
在conda里面查看python版本。
conda -V
python -V
-
7. 在conda里面创建虚拟环境。
wxm_pytorch是虚拟环境名字。
conda create -n wxm_pytorch python=3.7
点击y。
-
8. 激活虚拟环境。
conda activate wxm_pytorch
进入pytorch官网选择配置项。
-
9. pip安装
- 根据实际环境选择
- https://pytorch.org/
pip3 install torch==1.10.2+cu102 torchvision==0.11.3+cu102 torchaudio===0.10.2+cu102 -f https://download.pytorch.org/whl/cu102/torch_stable.html
下好了。
测试一下:
-
10. 下载PyCharm Community Edition
https://www.jetbrains.com/pycharm/download/
-
11. 添加新的解释器
看到torch了。
第一个DEMO
终于!!!
————————————————
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/qq_43779149/article/details/123251209