(转载)windows + anaconda + pycharm + nvidia + cuda + cudnn + pytorch 安装教程

配置环境简洁版,以防原文丢失,咱这里直接整理复制一下。

尊重他人成果,本文是转载转载转载

原文链接:https://blog.csdn.net/qq_43779149/article/details/123251209

目录

1. 查看显卡信息

2. 查看cuda版本

3. 安装cuda

4. 安装cudnn

5. 配置cuda环境变量

6. 安装pytorch

7. 在conda里面创建虚拟环境。

8. 激活虚拟环境。

9. pip安装

10. 下载PyCharm Community Edition

11. 添加新的解释器


1. 查看显卡信息

操作:开始 —— 右键 —— 设备管理器 —— 显示适配器。

  • 2. 查看cuda版本

操作:右下角NVIDIA —— 右键 —— NVIDIA控制面板 —— 系统信息 —— 组件。

  • 3. 安装cuda

去CUDA官网下载cuda10.2版本。(根据自己实际选择版本)

https://developer.nvidia.com/cuda-downloads


下载后双击exe文件,更改目录,解压。


解压完成后会自动进入安装流程。


按照安装提示默认安装即可。

安装中。


检查是否安装成功。

nvcc -V


成功嘞!

  • 4. 安装cudnn

去CUDNN官网下载cuda10.2版本对应的cudnn。(根据自己实际选择版本)

https://developer.nvidia.com/cudnn-downloads

下载之后,解压缩,将CUDNN压缩包里面的bin、include、lib文件直接复制到CUDA的安装目录下(C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2)。

这里如果遇到管理员权限问题。


在”为所有当前项目执行此操作“前点击对号再点击继续。

  • 5. 配置cuda环境变量

系统变量已添加

环境变量的PATH里添加bin和libnvvp

  • 6. 安装pytorch

在conda里面查看python版本。

conda -V
python -V

  • 7. 在conda里面创建虚拟环境。

wxm_pytorch是虚拟环境名字。

conda create -n wxm_pytorch python=3.7

点击y。

  • 8. 激活虚拟环境。

conda activate wxm_pytorch

进入pytorch官网选择配置项。

pip3 install torch==1.10.2+cu102 torchvision==0.11.3+cu102 torchaudio===0.10.2+cu102 -f https://download.pytorch.org/whl/cu102/torch_stable.html


下好了。

测试一下:


 

  • 10. 下载PyCharm Community Edition

https://www.jetbrains.com/pycharm/download/

  • 11. 添加新的解释器


看到torch了。


第一个DEMO

终于!!!


————————————————

                            版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
                        
原文链接:https://blog.csdn.net/qq_43779149/article/details/123251209

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值