论文标题
Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models 开放材料 2024 (OMat24) 无机材料数据集和模型
论文链接
Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models论文下载
论文作者
Luis Barroso-Luque, Muhammed Shuaibi, Xiang Fu, Brandon M. Wood, Misko Dzamba, Meng Gao, Ammar Rizvi, C. Lawrence Zitnick, Zachary W. Ulissi
内容简介
本文介绍了开放材料2024(OMat24)数据集及其模型,旨在推动人工智能在材料科学中的应用。OMat24数据集包含超过1.1亿个基于密度泛函理论(DFT)计算的无机材料数据,涵盖了结构和成分的多样性。研究中提出的EquiformerV2模型在Matbench Discovery排行榜上表现出色,能够以超过0.9的F1分数和20 meV/atom的精度预测基态稳定性和形成能。通过对模型大小、辅助去噪目标和微调的影响进行探索,研究表明OMat24数据集和模型的开放发布将为研究社区提供基础,促进AI辅助材料科学的进一步发展。
分点关键点
-
OMat24数据集的构建
- OMat24数据集包含超过1.1亿个DFT计算结果,专注于无机块状材料的结构和成分多样性。数据集的生成结合了DFT单点计算、结构弛豫和分子动力学轨迹,确保了数据的多样性和物理重要性。
- OMat24数据集包含超过1.1亿个DFT计算结果,专注于无机块状材料的结构和成分多样性。数据集的生成结合了DFT单点计算、结构弛豫和分子动力学轨迹,确保了数据的多样性和物理重要性。
-
EquiformerV2模型的性能
- EquiformerV2模型在Matbench Discovery排行榜上取得了最先进的性能,能够有效预测材料的基态稳定性和形成能。该模型的F1分数超过0.9,精度达到20 meV/atom,显示出其在材料发现中的潜力。
-
开放数据集的意义
- OMat24数据集和模型的开放发布为研究人员提供了一个重要的资源,促进了AI在材料科学中的应用。研究者可以在此基础上进行进一步的研究和模型改进,推动材料发现的进程。
- OMat24数据集和模型的开放发布为研究人员提供了一个重要的资源,促进了AI在材料科学中的应用。研究者可以在此基础上进行进一步的研究和模型改进,推动材料发现的进程。
-
数据集的局限性
- 尽管OMat24是一个庞大的开放数据集,但它仍然存在一些局限性,例如仅包含周期性块体结构,缺乏对点缺陷、表面和非化学计量比的考虑。这些局限性可能会影响使用该数据集训练的模型的预测能力。
- 尽管OMat24是一个庞大的开放数据集,但它仍然存在一些局限性,例如仅包含周期性块体结构,缺乏对点缺陷、表面和非化学计量比的考虑。这些局限性可能会影响使用该数据集训练的模型的预测能力。
论文代码
代码链接:https://github.com/FAIR-Chem/fairchem
中文关键词
- 开放材料数据集
- 无机材料
- 密度泛函理论
- 人工智能
- 材料发现
- EquiformerV2模型
AI生物制药论文合集:
希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!