AI生物制药论文解析|Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models

论文标题

Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models 开放材料 2024 (OMat24) 无机材料数据集和模型

论文链接

Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models论文下载

论文作者

Luis Barroso-Luque, Muhammed Shuaibi, Xiang Fu, Brandon M. Wood, Misko Dzamba, Meng Gao, Ammar Rizvi, C. Lawrence Zitnick, Zachary W. Ulissi

内容简介

本文介绍了开放材料2024(OMat24)数据集及其模型,旨在推动人工智能在材料科学中的应用。OMat24数据集包含超过1.1亿个基于密度泛函理论(DFT)计算的无机材料数据,涵盖了结构和成分的多样性。研究中提出的EquiformerV2模型在Matbench Discovery排行榜上表现出色,能够以超过0.9的F1分数和20 meV/atom的精度预测基态稳定性和形成能。通过对模型大小、辅助去噪目标和微调的影响进行探索,研究表明OMat24数据集和模型的开放发布将为研究社区提供基础,促进AI辅助材料科学的进一步发展。

分点关键点

  1. OMat24数据集的构建

    • OMat24数据集包含超过1.1亿个DFT计算结果,专注于无机块状材料的结构和成分多样性。数据集的生成结合了DFT单点计算、结构弛豫和分子动力学轨迹,确保了数据的多样性和物理重要性。
      在这里插入图片描述
  2. EquiformerV2模型的性能

    • EquiformerV2模型在Matbench Discovery排行榜上取得了最先进的性能,能够有效预测材料的基态稳定性和形成能。该模型的F1分数超过0.9,精度达到20 meV/atom,显示出其在材料发现中的潜力。
  3. 开放数据集的意义

    • OMat24数据集和模型的开放发布为研究人员提供了一个重要的资源,促进了AI在材料科学中的应用。研究者可以在此基础上进行进一步的研究和模型改进,推动材料发现的进程。
      在这里插入图片描述
  4. 数据集的局限性

    • 尽管OMat24是一个庞大的开放数据集,但它仍然存在一些局限性,例如仅包含周期性块体结构,缺乏对点缺陷、表面和非化学计量比的考虑。这些局限性可能会影响使用该数据集训练的模型的预测能力。
      在这里插入图片描述

论文代码

代码链接:https://github.com/FAIR-Chem/fairchem

中文关键词

  1. 开放材料数据集
  2. 无机材料
  3. 密度泛函理论
  4. 人工智能
  5. 材料发现
  6. EquiformerV2模型

AI生物制药论文合集:

AI生物制药论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值