论文标题
Social Physics Informed Diffusion Model for Crowd Simulation 基于社会物理学的群体模拟扩散模型
论文链接
Social Physics Informed Diffusion Model for Crowd Simulation论文下载
论文作者
Hongyi Chen, Jingtao Ding, Yong Li, Yue Wang, Xiao-Ping Zhang
内容简介
本文提出了一种名为SPDiff的社会物理信息扩散模型,旨在解决现有物理驱动机器学习方法在群体模拟中无法全面建模人类运动的异质性和多模态性的问题。SPDiff通过结合人群的交互和历史信息,逆转扩散过程,从而生成后续时间段内行人运动的分布。该模型借鉴了社会力模型(SFM),设计了一个人群交互模块来指导去噪过程,并通过多帧展开训练算法来减轻长期模拟中的误差累积。实验结果表明,SPDiff在宏观和微观评估指标上均优于现有的基线方法,显示出其在群体模拟中的有效性和优越性。
分点关键点
-
SPDiff模型设计
- SPDiff模型结合了社会物理学的知识,利用人群的交互和历史信息来生成行人运动的分布。该模型通过逆转扩散过程,能够更好地捕捉人类运动的复杂性和多样性。
- SPDiff模型结合了社会物理学的知识,利用人群的交互和历史信息来生成行人运动的分布。该模型通过逆转扩散过程,能够更好地捕捉人类运动的复杂性和多样性。
-
人群交互模块
- 该模块基于社会力模型(SFM)设计,旨在指导去噪过程。通过引入图神经网络(GNN),SPDiff能够有效地模拟行人之间的相互作用,增强模型的表现。
-
多帧展开训练算法
- 为了应对长期模拟中的误差累积,SPDiff采用了多帧展开训练算法。这一算法允许模型在定义的时间窗口内模拟轨迹,并计算累积误差,从而更新模型参数,确保长期物理一致性。
- 为了应对长期模拟中的误差累积,SPDiff采用了多帧展开训练算法。这一算法允许模型在定义的时间窗口内模拟轨迹,并计算累积误差,从而更新模型参数,确保长期物理一致性。
-
实验结果与性能评估
- 在两个真实世界数据集上的实验表明,SPDiff在微观和宏观模拟真实性指标上均有显著提升,性能提升幅度达到18.9%-37.2%。这些结果验证了SPDiff的有效性和泛化能力。
- 在两个真实世界数据集上的实验表明,SPDiff在微观和宏观模拟真实性指标上均有显著提升,性能提升幅度达到18.9%-37.2%。这些结果验证了SPDiff的有效性和泛化能力。
论文代码
代码链接:https://github.com/tsinghua-fib-lab/SPDiff
中文关键词
- 社会物理学
- 群体模拟
- 扩散模型
- 人群交互
- 多模态性
- 深度学习
AI生物制药论文合集:
希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!