论文标题
Toward Global Convergence of Gradient EM for Over-Parameterized Gaussian Mixture Models 面向过参数化高斯混合模型的梯度 EM 全局收敛性
论文链接
Toward Global Convergence of Gradient EM for Over-Parameterized Gaussian Mixture Models论文下载
论文作者
Weihang Xu, Maryam Fazel, Simon S. Du
内容简介
本文研究了在过参数化设置下的高斯混合模型(GMM)的梯度期望最大化(EM)算法。具体而言,考虑具有n > 1个分量的GMM从由单个真实高斯分布生成的数据中学习。尽管2高斯混合的特殊情况已有较为明确的结果,但对于任意n的全局收敛分析仍未解决,并面临多个技术障碍。为了解决这些挑战,本文构建了一种新颖的基于似然的收敛分析框架,并严格证明了梯度EM以次线性速率O(1/√t)全局收敛。这是针对超过2个分量的高斯混合模型的首次全局收敛结果。研究还指出了学习一般过参数化GMM的新技术挑战,即存在可能使梯度EM陷入局部最优的糟糕初始化区域。
分点关键点
-
全局收敛性证明
- 本文证明了在单一真实高斯分布下,梯度EM算法对通用n分量GMM的全局收敛性。这是针对n分量GMM的首次全局收敛性证明,且收敛速率为次线性,反映了过参数化GMM的固有特性。
- 本文证明了在单一真实高斯分布下,梯度EM算法对通用n分量GMM的全局收敛性。这是针对n分量GMM的首次全局收敛性证明,且收敛速率为次线性,反映了过参数化GMM的固有特性。
-
新颖的分析框架
- 提出了基于似然的收敛分析框架,解决了以往全局分析中遇到的技术障碍。该框架通过证明似然损失函数L收敛到0来进行分析,而不是直接证明参数的收敛。
-
糟糕的初始化区域
- 研究发现存在糟糕的初始化区域,这些区域可能使梯度EM在收敛前陷入局部最优,导致收敛速率中不可避免地出现指数因子。这一发现为理解过参数化GMM的学习过程提供了新的视角。
-
与现有研究的对比
- 本文的结果与以往研究不同,后者主要集中在局部收敛或2高斯混合的特殊情况。本文的全局收敛性分析为更一般的n高斯混合模型提供了理论支持。
中文关键词
- 高斯混合模型
- 梯度期望最大化
- 全局收敛性
- 过参数化
- 糟糕初始化区域
- 似然函数分析
Neurlps2024论文合集:
希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!