论文标题
DiffusionEdge: Diffusion Probabilistic Model for Crisp Edge Detection
DiffusionEdge:用于清晰边缘检测的扩散概率模型
论文链接
DiffusionEdge: Diffusion Probabilistic Model for Crisp Edge Detection论文下载
论文作者
Yunfan Ye, Kai Xu, Yuhang Huang, Renjiao Yi, Zhiping Cai
内容简介
本文提出了一种名为DiffusionEdge的扩散概率模型,旨在解决传统边缘检测方法在准确性和清晰度上的不足。现有的基于学习的边缘检测器通常受限于编码器-解码器架构,难以同时生成正确且清晰的边缘图。DiffusionEdge通过在潜在空间中应用扩散概率模型,结合不确定性感知的交叉熵损失,优化边缘检测过程。该模型采用解耦架构加速去噪过程,并引入自适应傅里叶滤波器以调整特定频率的潜在特征。实验结果表明,DiffusionEdge在多个边缘检测基准上表现优越,尤其在NYUDv2数据集上,ODS、OIS和AC分别提高了30.2%、28.1%和65.1%。该研究为边缘检测领域提供了一种新的思路,能够在不依赖后处理的情况下直接生成准确且清晰的边缘图。
分点关键点
-
DiffusionEdge模型
- DiffusionEdge是第一个专为边缘检测任务设计的扩散模型,能够直接生成准确且清晰的边缘图,而无需后处理。该模型通过在潜在空间中应用扩散概率模型,优化了边缘检测的效率和效果。
-
技术设计与架构
- 采用解耦架构以加速去噪过程,并引入自适应傅里叶滤波器来调整潜在特征的频率成分。这种设计使得DiffusionEdge在有限的计算资源下仍能稳定训练,并生成高质量的边缘图。
-
实验结果与性能
- 在四个边缘检测基准数据集上进行的广泛实验表明,DiffusionEdge在正确性和清晰度方面均优于现有方法。在NYUDv2数据集上,DiffusionEdge的性能显著提升,显示出其在边缘检测任务中的潜力。
-
不确定性蒸馏策略
- 为了保持来自多个标注者的像素级不确定性,DiffusionEdge采用不确定性蒸馏策略,直接将优化后的梯度从像素级传递到潜在空间。这一策略有效提高了模型的训练稳定性和性能。
- 为了保持来自多个标注者的像素级不确定性,DiffusionEdge采用不确定性蒸馏策略,直接将优化后的梯度从像素级传递到潜在空间。这一策略有效提高了模型的训练稳定性和性能。
论文代码
代码链接:https://github.com/GuHuangAI/DiffusionEdge
中文关键词
- 扩散概率模型
- 边缘检测
- 清晰度
- 不确定性蒸馏
- 自适应傅里叶滤波器
- 深度学习
AAAI论文合集:
希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!