AAAI2024最佳解读|Spatial-Contextual Discrepancy Information Compensation for GAN Inversion

论文标题

Spatial-Contextual Discrepancy Information Compensation for GAN Inversion 基于空间上下文差异信息的生成对抗网络反演补偿

论文链接

Spatial-Contextual Discrepancy Information Compensation for GAN Inversion论文下载

论文作者

Ziqiang Zhang, Yan Yan, Jing-Hao Xue, Hanzi Wang

内容简介

本文提出了一种新颖的生成对抗网络(GAN)反演方法,称为空间上下文差异信息补偿(SDIC),旨在解决现有GAN反演方法在重建精度与可编辑性之间的失真-可编辑性权衡问题。SDIC由差异信息预测网络(DIPN)和差异信息补偿网络(DICN)组成。DIPN通过编码原始图像和初始重建图像的多级空间上下文信息,预测出一个空间上下文引导的差异图。DICN则利用该差异图对潜在代码和GAN生成器进行补偿,从而生成高质量的重建和编辑图像。实验结果表明,SDIC在快速推理速度下实现了优秀的失真-可编辑性权衡,显著提高了图像重建的保真度和可编辑性。在这里插入图片描述

分点关键点在这里插入图片描述

  1. SDIC框架

    • SDIC采用“补偿和编辑”范式,首先通过DIPN生成空间上下文引导的差异图,然后利用DICN对潜在代码和GAN生成器进行补偿。这一过程有效弥补了反演过程中图像细节的损失。
  2. 差异信息预测网络(DIPN)

    • DIPN由双分支空间上下文沙漏模块和差异图学习沙漏模块组成,能够提取原始图像和初始重建图像的多级空间上下文信息,并生成可靠的差异图,从而捕获细粒度的图像细节。
  3. 差异信息补偿网络(DICN)

    • DICN将预测的差异信息整合到潜在代码和GAN生成器中,通过不同的变换生成高质量的重建和编辑图像。这一方法有效提高了重建图像的保真度,减少了伪影的产生。
  4. 实验结果

    • 定量和定性实验表明,SDIC在保真度和可编辑性方面优于现有的最先进GAN反演方法,展示了其在图像反演和编辑任务中的优越性能。在这里插入图片描述

论文代码

代码链接:https://github.com/ZzqLKED/SDIC

中文关键词

  1. 生成对抗网络
  2. GAN反演
  3. 空间上下文信息
  4. 差异信息补偿
  5. 图像重建
  6. 可编辑性

AAAI论文合集:

AAAI论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值