论文标题
Spatial-Contextual Discrepancy Information Compensation for GAN Inversion 基于空间上下文差异信息的生成对抗网络反演补偿
论文链接
Spatial-Contextual Discrepancy Information Compensation for GAN Inversion论文下载
论文作者
Ziqiang Zhang, Yan Yan, Jing-Hao Xue, Hanzi Wang
内容简介
本文提出了一种新颖的生成对抗网络(GAN)反演方法,称为空间上下文差异信息补偿(SDIC),旨在解决现有GAN反演方法在重建精度与可编辑性之间的失真-可编辑性权衡问题。SDIC由差异信息预测网络(DIPN)和差异信息补偿网络(DICN)组成。DIPN通过编码原始图像和初始重建图像的多级空间上下文信息,预测出一个空间上下文引导的差异图。DICN则利用该差异图对潜在代码和GAN生成器进行补偿,从而生成高质量的重建和编辑图像。实验结果表明,SDIC在快速推理速度下实现了优秀的失真-可编辑性权衡,显著提高了图像重建的保真度和可编辑性。
分点关键点
-
SDIC框架
- SDIC采用“补偿和编辑”范式,首先通过DIPN生成空间上下文引导的差异图,然后利用DICN对潜在代码和GAN生成器进行补偿。这一过程有效弥补了反演过程中图像细节的损失。
-
差异信息预测网络(DIPN)
- DIPN由双分支空间上下文沙漏模块和差异图学习沙漏模块组成,能够提取原始图像和初始重建图像的多级空间上下文信息,并生成可靠的差异图,从而捕获细粒度的图像细节。
-
差异信息补偿网络(DICN)
- DICN将预测的差异信息整合到潜在代码和GAN生成器中,通过不同的变换生成高质量的重建和编辑图像。这一方法有效提高了重建图像的保真度,减少了伪影的产生。
-
实验结果
- 定量和定性实验表明,SDIC在保真度和可编辑性方面优于现有的最先进GAN反演方法,展示了其在图像反演和编辑任务中的优越性能。
- 定量和定性实验表明,SDIC在保真度和可编辑性方面优于现有的最先进GAN反演方法,展示了其在图像反演和编辑任务中的优越性能。
论文代码
代码链接:https://github.com/ZzqLKED/SDIC
中文关键词
- 生成对抗网络
- GAN反演
- 空间上下文信息
- 差异信息补偿
- 图像重建
- 可编辑性
AAAI论文合集:
希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!