- 博客(327)
- 收藏
- 关注
原创 超级智能时代:奥特曼宣布人类已越过不可逆的“事件视界”
当数字智慧的光芒照亮未知深空,人类能否在自我创造的加速洪流中锚定价值航标,将决定我们最终抵达的是星辰大海,还是智能的暗夜。这并非科幻小说的序章,而是此刻正在发生的现实——尽管街头尚无游荡的机器人,疾病也未彻底被征服,表面平静之下,一场重塑文明的认知革命正悄然加速。但硬币的另一面是生产力爆发带来的空前繁荣:“世界将以如此快的速度变得更加富有,我们将有能力探索前所未有的政策创新。当超级智能的潮水漫过堤岸,人类文明需要一场集体认知的“大宪章运动”——在代码吞噬世界前,重写人机共存的新契约。
2025-06-12 08:24:49
201
原创 DrugCLIP:百万倍提速,AI推开后AlphaFold时代药物发现新大门
近⽇,清华⼤学智能产业研究院(AIR)-北京智源⼈⼯智能研究院“健康计算联合研究中⼼”发布AI驱动的超⾼通量药物虚拟筛选平台DrugCLIP,该平台系统由AIR兰艳艳教授团队研发。
2025-06-10 08:24:26
739
原创 人工智能的社交课:从博弈游戏到健康关怀
在医疗健康这一最需要人性温度的场景中,AI的社交进化已不仅仅是技术课题,更关乎未来人机共生的质量。一项由德国顶尖科研机构联合开展的研究揭示了令人深思的答案:在社交智能这门课上,当前的人工智能仍有漫长的学习之路要走。想象一下:一个具备社交智能的AI助手能更有效地鼓励患者坚持用药,陪伴焦虑者走出情绪困境,或引导家庭就艰难的医疗决策进行建设性对话——这正是该研究指向的充满温度的未来。时,AI的短板暴露无遗。面对AI的“社交笨拙”,研究者找到了一个简洁却有效的钥匙:在AI决策前,提示它尝试站在其他玩家的角度思考。
2025-06-05 08:25:30
343
原创 人工智能的能源困境:繁荣与危机并存的未来
在ChatGPT掀起全球浪潮的两年后,人们逐渐意识到:人工智能革命背后,潜藏着一个关乎人类命运的能源命题。
2025-05-26 09:24:13
886
原创 视觉语言模型之困:当否定词成为理解的“盲区”
麻省理工学院的最新研究揭示了视觉语言模型(VLM)在处理否定词时的显著缺陷,这一发现对人工智能在高风险领域的应用提出了重要警示。研究表明,VLM在识别图像标题中的否定内容时表现不佳,准确率接近随机猜测,这在医疗诊断等关键场景中可能导致严重后果。
2025-05-20 10:57:26
306
原创 OpenAI发布HealthBench医疗基准:AI医生革命来临,o3模型登顶超越人类顶尖水平
OpenAI最新发布的医疗评估基准HealthBench标志着医疗人工智能领域的重大突破。该基准通过5000个真实医疗对话场景,覆盖七大主题,并配备48,562条由专科医生制定的评分标准,全面评估AI在医疗诊断中的表现。OpenAI的o3模型在HealthBench上的表现显著提升,诊断准确率接近甚至超越人类医生最佳水平,尤其在AI辅助下,医生诊断准确率提升近4倍。此外,GPT-4.1作为评分模型展现出专家级评判力,确保了评估的客观性和严谨性。OpenAI还在成本控制上取得突破,小模型如GPT-4.1nan
2025-05-14 08:33:48
639
原创 人工智能的创造力:一场关于感知的认知革命
阿尔托大学与赫尔辛基大学的研究团队通过实验揭示了创造力的本质并非客观存在,而是取决于观察者的视角。实验显示,当参与者目睹AI的创作过程时,对其“创造力”的评分显著提升,表明人类对创造力的认知与创作过程的可见性密切相关。研究还发现,机器人外形对创造力评价无显著影响,提示在艺术创作领域,行为本身比执行者形态更受关注。该研究触及AI发展的核心伦理问题,警示开发者需警惕“创造力幻觉”带来的伦理风险,并倡导采用开放科学框架确保系统透明度。研究深层价值在于揭示了人类评判创造力的固有模式,提示未来应建立跨学科评估体系,构
2025-05-13 08:18:32
491
原创 人工智能可信度新突破:MIT改进共形分类助力高风险医学诊断
麻省理工学院(MIT)的研究团队近期提出一种创新方法,通过改进共形分类(Conformal Prediction)技术,显著缩小预测集规模并提升可信度,为医学影像乃至更多高风险领域的AI应用开辟了新路径。通过缩小预测集规模并增强结果可靠性,共形分类与TTA的结合不仅提升了医学诊断的效率,更为AI在自动驾驶、金融风控等领域的落地注入新动力。例如,在医学影像分类中,原本需要列出数十种可能性的预测集,可精简至更易操作的规模,帮助医生快速聚焦关键诊断。以及如何优化TTA的计算开销,使其适用于资源受限的环境。
2025-05-08 08:12:04
620
原创 文本到视频AI新突破:MagicTime开启变形视频生成新纪元
近期,来自罗切斯特大学、北京大学等机构的科研团队在《IEEE模式分析与机器智能学报》发表的MagicTime模型,标志着文本到视频AI在模拟现实世界物理规律领域取得关键突破,为科学探索与工业应用开辟了新路径。首先,他们构建了全球首个专注于变形过程的高质量延时视频数据集Time-lapse-Vid,涵盖2000余个生物生长、建筑施工、食品加工等场景的4K超清视频,每个片段均配备精确的文本描述。可以预见,当AI不仅能"看见"现在,还能"推演"未来时,人类对复杂系统的认知将迈入新纪元。
2025-05-07 08:33:59
354
原创 人工智能聊天机器人:一场静悄悄的革命?
然而两年过去,哥本哈根大学与芝加哥大学的最新联合研究却揭示了一个耐人寻味的现象:在丹麦这个数字化程度全球领先的国度,人工智能聊天机器人虽已渗透到各个工作场景,却尚未引发预期的经济地震。这场被预言为"海啸"的技术革命,当前更像是平静湖面的涟漪。或许,这场静悄悄革命的终极启示在于:技术革命的真正完成,不在于机器的智能程度,而在于人类如何重新锚定自身在智能时代的独特价值。那些正在发生的细微变化——一个教师教学法的转变,一家中小企业流程的优化,一个新兴职业的萌芽——终将在时间复利作用下,汇聚成真正改变世界的浪潮。
2025-05-06 09:09:03
520
原创 RAGEN与StarPO:突破LLM代理训练瓶颈,开启AI自我进化新篇章
研究人员推出了RAGEN,这是一种人工智能框架,旨在应对LLM代理在处理复杂情况时的不稳定性。
2025-04-28 09:23:05
670
原创 AI诈骗狂潮:微软40亿美元拦截战背后的科技暗战
这份最新《网络信号》报告揭露的不仅是40亿美元诈骗帝国的冰山一角,更预警着人工智能技术民主化带来的黑暗狂潮:曾经需要黑客团队数周策划的精密骗局,如今借助AI工具,普通罪犯只需轻点鼠标即可批量生产。微软安全专家发现,网络犯罪已形成完整的AI驱动产业链。某北美消费者向微软举报,他在某"奢侈品折扣网"遭遇的客服,能用17种话术拖延退款请求,直到用户警觉时,AI已与之周旋了48小时。微软报告的真正启示,不在于40亿美元这个惊人数字,而在于警示我们:在享受AI红利的同时,每个点击都可能成为犯罪链条的齿轮。
2025-04-27 08:10:57
396
原创 Crawl4AI:打破数据孤岛,开启大语言模型的实时智能新时代
未来,随着自主数据获取能力与推理能力的深度融合,大语言模型或将真正突破静态知识的边界,开启动态认知的新纪元。在人工智能的竞技场上,大语言模型(LLMs)正以惊人的速度进化,但其认知能力的跃升始终面临一个根本性挑战——如何持续获取新鲜、结构化、高相关性的数据。Crawl4AI的诞生,以开源网页爬取技术重构了数据供应链,让大语言模型真正具备了"动态觅食"的能力,开启了从被动接受数据到主动探索信息的范式转变。在医疗健康领域,研究者通过其构建的文献追踪系统,大幅缩短了前沿发现的转化周期。
2025-04-22 08:34:14
758
原创 小模型逆袭:MIT新算法让AI代码生成更精准高效
麻省理工学院(MIT)联合多所高校的研究团队近期提出了一种革命性方法,不仅显著提升了AI生成代码的准确性和结构合理性,还让小型模型在特定任务中击败了更庞大的竞争对手。研究团队另辟蹊径,将"专家知识"融入LLM的生成过程。正如论文合著者Timothy O'Donnell指出的,传统LLM本质上是基于统计的序列预测器,而新方法首次在特定领域实现了"从符号到意义"的可靠映射。研究数据显示,在生成复杂SQL查询时,新架构的算力消耗仅为传统方法的1/5,这对需要实时响应的应用场景(如交互式编程助手)意义重大。
2025-04-21 09:22:53
317
原创 AI材料设计之——小分子材料设计如此简单!
海森大数据聚焦于材料大数据检索与挖掘、材料计算与模拟、新材料智能设计与定向开发等前沿领域,旨在为中国企业与科研单位提供全面、高效的综合解决方案。公司自主开发构建的《海森材料AI平台》,涵盖了全球99%已发布的化合物,并持续更新,补全扩充了50亿项计算性质。
2025-04-18 08:29:42
405
原创 技术驱动创新:海森大数据7项软件著作权申请成功
打造材料数据大平台,引领智慧研发新时代,海森大数据通过不断地技术创新,持续的技术突破,在新材料创新版图中刻下鲜明的坐标。从材料数据库建设到AI辅助设计,从研发管理到生产应用,海森大数据公司正通过持续的技术突破,重塑新材料产业创新生态。历经五年深耕,海森公司已构建起"软著+专利+标准"的立体化知识产权布局,此次获批的软著覆盖材料研发、生产管理、AI算法应用等领域,不仅彰显了公司在材料科学数字化领域的深厚技术积淀,更验证了“以技术驱动产业升级”的战略价值。海森CPL材料智能研发系统V1.0。
2025-04-16 08:26:39
272
原创 颠覆药物研发:多模态AI如何开启分子设计新纪元?
例如,针对“抑制HIV且可穿透血脑屏障”的分子设计任务,Llamole生成的候选结构不仅满足功能需求,还显著降低了合成成本。例如,当用户要求“设计一种可口服的抗生素”时,LLM会先调用图扩散模型生成候选分子,再通过逆合成模块验证其可行性,最终输出包含结构图、文本说明与合成路线的完整方案。另一方面,基于图结构的机器学习模型虽能精准解析分子中的原子与键连接,却难以理解自然语言指令,也无法生成人类可读的合成计划。更关键的是,这类模型需要高度结构化的输入,限制了其在真实科研场景中的应用。然而,系统仍存在局限。
2025-04-15 08:31:52
582
原创 AI药神:当人工智能闯入药物研发的“无人区“
接着,分子对接技术像虚拟的"钥匙匠",在计算机中让数百万候选分子与靶点蛋白"亲密接触",筛选出最匹配的候选者。更疯狂的是扩散模型——通过给分子"加噪-去噪"的过程,它能在靶点口袋中直接"雕刻"出全新的3D分子,就像数字版的分子雕塑家。或许在不远的将来,治愈癌症或阿尔茨海默病的"神药",就诞生于某个AI算法的灵光乍现——这不是科幻小说的桥段,而是正在发生的医学革命。基于配体的药物设计(LBDD)技术展现了化学家的"第六感"——通过已知活性分子的蛛丝马迹,逆向破解药物的密码。
2025-04-03 08:06:31
925
原创 AI矿工掘金材料新大陆:DeepMind如何用神经网络改写元素周期表?
GNoME的核心是套用自然语言处理的革命性思路:把原子视为"化学单词",晶体结构看作"元素句子"。他们不是手握烧瓶的传统化学家,而是DeepMind团队开发的GNoME人工智能——这个基于图神经网络的"元素建筑师",刚刚在《自然》杂志上宣布发现了38.1万种新型稳定材料,将人类认知的材料宇宙瞬间扩大了十倍。当3.8万种开放晶体结构在全球实验室生根发芽,或许某天,人类终将解开元素周期表最后的密码,在AI辅助下缔造真正的材料奇点。这些曾被判"死刑"的复杂体系,如今在AI的化学视野中展现出惊人的稳定性。
2025-03-27 10:30:54
1138
1
原创 AI Agent:技术浪潮中的机遇与挑战
这种从"被动响应"到"主动执行"的跃迁,正如开发者William Lee所言:"真正的智能体不应是对话机器人,而应具备自主行动的核心决策系统。这种变革不仅意味着人力成本的缩减,更将催生全新的价值交付模式——从精准营销的智能方案生成,到AI Agent的自主流程优化,人机协同将创造出前所未有的生产力形态。中国电商专家郭涛指出的"三层面痛点"颇具警示意义:基础理论的原创匮乏、核心算法的对外依赖、高端芯片的制程差距,这些"卡脖子"问题可能让AI Agent竞争演变成新形态的科技博弈。
2025-03-20 08:34:33
339
原创 新型神经网络KAN:准确性高且易于解释
近年来,研究人员开发了一种新型神经网络——柯尔莫戈洛夫-阿诺德网络(KAN),这种网络不仅在准确性上超越了传统系统,而且具有更高的可解释性,为科学家发现新的自然规律提供了有力工具。此外,KAN的可视化能力使得研究人员可以直观地绘制出激活函数的形状,了解每个连接的重要程度,并通过修剪弱连接和简化激活函数,用直观的单行函数总结整个KAN。例如,阿根廷圣安得利斯大学的研究团队将KAN与卷积神经网络结合,用于手写数字和衣服分类任务,取得了与传统卷积神经网络相当的性能,但使用的参数减少了约40%。
2025-03-06 08:12:45
933
原创 DeepSeek崛起:中国AI挑战美国领先地位
DeepSeek的崛起,不仅是一个模型的成功,更是中国AI产业整体实力提升的缩影,预示着AI供应链格局或将迎来重塑。他指出,尽管美国在GenAI领域一度领先,但中国的进步速度惊人,双方在文本模型上的差距已经迅速缩小,甚至在某些领域,如视频生成,中国已经取得了领先地位。此外,在AI伦理和监管方面,中国也需要加强与国际社会的合作和交流,以确保AI技术的健康发展和广泛应用。DeepSeek的崛起是一个令人瞩目的现象,它不仅展示了中国AI团队的实力和创新精神,也预示着全球AI产业格局的深刻变化。
2025-02-14 08:13:00
288
原创 AI实验室copilot自动化科研,AMD联手约翰霍普金斯大学:成本节约84%!
为了解决这一问题,AMD 与约翰霍普金斯大学的研究团队联合推出了名为 Agent Laboratory 的创新框架,该框架能够实现从文献综述到实验设计和报告撰写的全流程自动化,显著提升科研效率。Agent Laboratory 的核心是一个多智能体协作系统,它包括多个专业化的语言模型代理:PhD 代理负责文献综述和研究规划,Postdoc 代理负责实验设计和结果解释,ML 工程师代理专注于代码实现,而 Professor 代理则负责论文评审和质量控制。
2025-01-16 08:33:09
662
原创 迎接2025年:人工智能引领的新时代变革
随着科技的飞速发展,我们正站在新时代的门槛上,准备迎接由人工智能(AI)驱动的深刻变革。通过与AI的紧密合作,我们可以将更多的时间和精力投入到那些需要人类独特创造力和情感智慧的工作中,从而释放出前所未有的生产力和创新力。同时,新一代的语音助手将具备更强的智能和交互能力,能够理解复杂的指令并提供更准确的响应,为人们的生活带来极大的便利。因此,“负责任”的人工智能将成为企业和社会的一个核心议题。在物流、客户支持和营销等领域,算法将代替人工做出快速而准确的决策,为企业带来更高的效率和更强的市场竞争力。
2024-12-19 08:16:40
387
原创 人工智能时代的计算化学实验:量子化学与机器学习的融合
2024年5月,多伦多大学Alán Aspuru-Guzik课题组在《Advanced Materials》期刊上发表的综述文章,为我们揭示了在这一新兴时代背景下,计算化学实验如何从量子化学迈向机器学习,并探讨了两者的深度融合如何为化学研究开辟新路径。他们凭借深厚的专业知识和直觉,能够推动计算机实验的不断进步,并与量子力学和ML技术紧密合作,共同探索新的、基于物理和数据驱动的解决方案。随着技术的不断进步和理论的持续深化,我们有理由相信,未来的化学研究将在AI与ML的助力下,绽放出更加璀璨的光芒。
2024-12-12 08:21:16
1288
原创 北大新模型FAN:新型神经网络架构,填补周期性特征建模空白
此外,FAN的实用性还体现在其广泛的应用场景中。展望未来,随着北大研究团队对FAN的进一步研究和优化,我们有理由相信,FAN将成为基础模型的关键组成部分,为人工智能领域的技术进步和创新发展注入新的活力。同时,FAN的成功也启示我们,在探索和理解自然界和人类社会的规律时,应该更加注重跨学科、跨领域的融合与创新,以更加全面、深入的视角去揭示世界的本质和奥秘。我们有理由期待,在未来的科学研究和技术革新中,FAN将发挥更加重要的作用,为人类社会的进步和发展贡献更多的智慧和力量。
2024-11-29 08:34:55
338
原创 DGCL:双图神经网络对比学习引领分子性质预测新篇章
近日,中山大学邹青松教授团队在Briefings in Bioinformatics上发表了一项重要成果——DGCL模型,该模型通过双图神经网络对比学习,实现了对分子性质的精准预测,为化学研究注入了新的活力。通过采用不同的GNN编码器,该模型能够充分利用分子固有的结构信息,捕捉分子的多维特征。同时,通过构建丰富的正负样本对,DGCL模型增强了模型对分子表征的区分能力,避免了过拟合的风险。通过双图神经网络对比学习和混合分子指纹的结合,该模型实现了对分子性质的精准预测,为化学研究注入了新的活力。
2024-11-14 08:31:03
610
原创 AI设计抗体笼药物:诺奖得主David Baker创立新公司引领生物制药革命
这种设计不仅保留了抗体的结合亲和力,还通过调整抗体笼的几何形状,改变了它们在体内的分布、保留方式以及与目标蛋白的相互作用方式。通过对几何形状的精确控制,抗体笼可以实现可调节的目标蛋白结合与递送,将抗体药物递送并分布到身体的特定部位或远离某些部位,从而具有更好的治疗效果。研究团队进一步验证了抗体笼的效果,发现与游离抗体或Fc融合相比,靶向细胞表面受体的抗体笼能够显著增强信号转导,如DR5介导的细胞凋亡、Tie2介导的血管生成,以及CD40激活和T细胞增殖。
2024-11-07 08:23:16
520
原创 Meta推出OMat24:AI驱动材料发现迈向新纪元
然而,一个显著的障碍在于缺乏公开的数据集和开放的预训练模型,限制了AI技术的广泛应用。OMat24数据集和模型的开源,为材料科学家提供了强大的工具,使他们能够更高效地探索化学空间,发现具有优异性能的新材料。更重要的是,开源版本为材料科学界提供了更多的选择和可能性,推动了AI技术在材料发现中的广泛应用和进一步发展。OMat24数据集的推出,不仅提供了大量的DFT计算结果,还涵盖了广泛的元素分布和物理上重要的非平衡结构,确保了训练的模型在动力学和远离平衡的特性上具有出色的适应性。
2024-10-24 08:30:27
534
原创 AI引领科学革命:AlphaFold开发者获2024诺贝尔化学奖
AlphaFold的广泛应用,特别是在生物制药领域,已经取得了显著的成果。从AlphaFold到AlphaFold 3:不断进化的预测能力AlphaFold的旅程始于2018年,当时DeepMind在第13届“蛋白质结构预测奥运会”CASP比赛中,凭借AlphaFold成功预测了43种蛋白质中25种的最准确结构,力压群雄,一战成名。与现有的预测方法相比,AlphaFold 3在预测蛋白质与其他分子类型的相互作用方面,准确率提高了至少50%,对于一些重要的相互作用类别,预测准确率甚至提高了一倍。
2024-10-11 08:05:40
1295
1
原创 AI加速绿色氢能革命:新催化剂发现仅需数天
此外,随着氢能产业的不断发展,对催化剂的需求也将持续增长,如何进一步提高催化剂的效率和降低成本,将是未来研究的重要方向。总之,多伦多大学的研究团队通过AI技术成功筛选出了一种性能优异的绿色氢气生产催化剂,为氢能产业的快速发展注入了新的活力。近期,多伦多大学(UoT)的研究团队通过人工智能(AI)技术,成功在几天内筛选出了一种性能优异的绿色氢气生产催化剂,这一突破性进展为氢能产业的快速发展注入了新的动力。然而,该技术对电力和催化剂的需求极高,尤其是贵金属催化剂的使用,使得PEM电解槽的制造成本居高不下。
2024-09-12 08:24:04
919
1
原创 西湖大学卢培龙团队突破:精确从头设计异手性蛋白复合物,开启镜像蛋白研究新篇章
它为我们揭开了异手性蛋白复合物设计的神秘面纱,也为未来的生物医学研究提供了无限可能。D型蛋白质,即由D-氨基酸或非手性氨基酸(如甘氨酸)组成的蛋白质分子,能够与L型蛋白质形成特异性的异手性蛋白-蛋白相互作用,这种独特的性质使其在生物医学领域具有巨大潜力。近日,西湖大学卢培龙团队携手清华大学刘磊团队,在《Cell Research》期刊上发表了一项革命性的研究成果——首次实现了异手性蛋白复合物的精确从头设计,这一突破不仅填补了蛋白质设计领域的一大空白,更为分子工具、疾病治疗及诊断技术的发展开辟了新的可能性。
2024-09-05 08:59:25
943
原创 深度学习:革新药物心脏毒性预测的新篇章
深度学习模型在这一任务上表现出了86.9%的准确率,且能够识别重要的分子特征,为肝毒性预测提供了新的思路。传统上,评估药物的心脏毒性主要依赖于体内和体外模型,但这些方法存在显著的局限性,往往无法准确预测药物对心脏的实际影响。其中,药物的心脏毒性是一个尤为棘手的问题,不少药物在上市后因被发现对心脏有潜在伤害而被迫召回,这不仅对患者构成威胁,也造成了巨大的资源浪费。特别是基于SST-CNN的框架,在药物类型分类上的准确率高达98.55%,在区分心脏毒性和非心脏毒性药物方面的准确率更是达到了惊人的99%。
2024-08-30 08:18:03
786
1
原创 AI科学家:从理论到实践的科研自动化革命
近日,Sakana AI公司,由Transformer架构的创造者之一Llion Jones创立,宣布了一项令人震惊的进展——首个完全自动化的科研平台,名为“The AI Scientist”。在测试过程中,团队对比了不同主流大模型的性能。Sakana AI的这项创新,无疑是AI科研领域的一座里程碑,它不仅展现了AI在科研自动化方面的巨大潜力,更为未来的科研模式带来了无限想象空间。自动化同行评审:配套的AI审稿人以近乎人类的准确度评估论文质量,提供反馈,形成持续的优化闭环,促进AI科学家的技能提升。
2024-08-19 08:19:32
369
原创 人工智能与心理健康护理:挑战、机遇与未来展望
患者和公众往往对AI抱有不切实际的期望,认为它能迅速解决复杂的心理问题,而实际上,AI的应用需要精准定位问题、精心设计算法,并经过严格的验证和测试。此外,AI还能根据患者的反馈和治疗进展,动态调整治疗方案,实现精准医疗。只有正视这些挑战、不断探索创新、加强跨学科合作与法律法规建设,才能充分发挥AI在提升心理健康护理水平方面的巨大潜力,为患者带来更加精准、高效、个性化的医疗服务。因此,应加强对AI的科普宣传和教育引导,提高公众对AI技术的认识和信任度,为AI在心理健康护理领域的广泛应用营造良好的社会氛围。
2024-08-09 08:30:00
756
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人